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ABSTRACT
Cloud systems suffer from distributed concurrency bugs, which

are notoriously difficult to detect and often lead to data loss and

service outage. This paper presents CloudRaid, a new effective

tool to battle distributed concurrency bugs. CloudRaid automati-

cally detects concurrency bugs in cloud systems, by analyzing and

testing those message orderings that are likely to expose errors.

We observe that large-scale online cloud applications process mil-

lions of user requests per second, exercising many permutations

of message orderings extensively. Those already sufficiently-tested

message orderings are unlikely to expose errors. Hence, CloudRaid

mines logs from previous executions to uncover those message

orderings which are feasible, but not sufficiently tested. Specifically,

CloudRaid tries to flip the order of a pair of messages < S,P > if they
may happen in parallel, but S always arrives before P from exist-

ing logs, i.e., excercising the order P ↣ S . The log-based approach

makes it suitable to live systems.

We have applied CloudRaid to automatically test four represen-

tative distributed systems: Apache Hadoop2/Yarn, HBase, HDFS

and Cassandra. CloudRaid can automatically test 40 different ver-

sions of the 4 systems (10 versions per system) in 35 hours, and can

successfully trigger 28 concurrency bugs, including 8 new bugs that

have never been found before. The 8 new bugs have all been con-

firmed by their original developers, and 3 of them are considered

as critical bugs that have already been fixed.
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1 INTRODUCTION
Cloud computing is now mainstream. Modern online applications,

from social networking and communication to banking, now play

an important part of our daily life. Distributed systems, such as

scale-out computing frameworks [7, 47], distributed key-value

stores [15, 28], scalable file systems [15, 28], and cluster manage-

ment services [47], are the fundamental building blocks of cloud ap-

plications. However, distributed systems are notoriously difficult to

get right. It is too complicated for the programmers to correctly rea-

son and handle concurrent executions on multiple machines. There

are widely existing concurrency bugs in real-world distributed

systems, which often lead to data loss and sometimes service out-

age [20, 50]. For example, on November 18th 2014, the Microsoft

Azure cloud hosting service went down for around 24 hours, due

to a bug in a server-side software update.

Distributed concurrency bugs are triggered by untimely interac-

tion among nodes, i.e., unexpected message orderings [18, 30]. This

fact has motivated a large body of research on distributed system

model checkers [19, 29, 33, 41], which detect hard-to-find bugs by

systematically exercising all possible messages orderings. Theoreti-

cally, these model checkers can guarantee reliability when running
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a same workload. However, distributed system model checkers

face the state-space explosion problem [29]. Despite recent ad-

vances [29], it is still difficult to scale these tools to many large

real-world applications. For example, in our experiments of run-

ning the WordCount workload on Apache Hadoop2/Yarn, 5,495

messages are involved and it is impractical to exhaustively test all

possible message orderings in a timely manner.

This paper proposes a novel strategy in battling distributed con-

currency bugs. We do not try to exhaustively exercise all possible

message orderings. Instead, we address a different question: which

message orderings are likely to trigger an error? Hence, our ap-

proach analyzes suspicious message orderings and only test those

orderings that are likely to expose errors. The approach is not

sound and does not guarantee free of concurrency bugs. However,

it is very effective in detecting distributed concurrency bugs, as

highlighted in our experiments. It is also simple and can be easily

adopted by live systems.

Which message ordering is likely to trigger an error? This ques-

tion is key to our approach. We address the question based on the

following observations:

● Observation1. The errors triggered by different message or-

derings often share a common root cause pattern: their cor-

responding message handlers access some shared objects

inconsistently, when given different orders.

● Observation2. Large-scale online applications process mil-

lions of user requests per second. Many permutations of

message orderings have already been extensively tested and

exercised in these live systems. Those sufficiently-tested

message orderings are unlikely to expose errors.

Hence,we can learn from previous executions to uncover these

message orderings that are likely to expose errors. Since we har-

ness the rich execution history from live systems, a non-intrusive

log-based approach is desirable. Modern cloud applications often

provide a rich set of runtime logs, which record important messages

and events to help with the diagnosis and monitoring of online

systems. Our approach mines logs from previous executions, to

uncover those message orderings which are feasible but not yet

sufficiently tested. The log-based approach makes it suitable to live

systems, where intrusive instrumentation is often not an option.

We develop CloudRaid, a new tool to effectively detect dis-

tributed concurrency bugs. CloudRaid automatically extracts se-

quences of important communication events from existing run-time

logs. Permutations of these event orderings will be further tested

if they are feasible but not yet exercised. A dynamic trigger is

employed to exercise and test the selected message orderings at

runtime. Previous studies [30] show that more than 60% distributed

concurrency bugs can be triggered by a single untimely message

delivery. Hence, we focus on the order between a pair of messages

only. CloudRaid tries to flip the order of a pair of messages < S,P >
if they may happen in parallel, but S always arrives before P from

existing logs, i.e., exercising the order P ↣ S .
We have applied CloudRaid to test four representative distributed

systems: Apache Hadoop2/Yarn [47], HDFS [5], HBase [15], and

Cassandra [28]. CloudRaid can be easily adopted. The system under

testing can run as is lively, without modification. In a separate test-

ing phase, our dynamic trigger performs minimal instrumentation

to test a specific message ordering. In our evaluation, we randomly

choose 40 different versions of these systems (10 versions per each

system), and ran 4 different workloads in total on these systems.

CloudRaid ran 3200 times all together in 35 hours, where each run

tries to exercise a specific message ordering. The 3200 runs suc-

cessfully triggered 28 bugs (with no false positives), including 8

new bugs that have never been found before. The 8 new bugs have

all been confirmed by the original developers, and 3 of them are

considered as critical bugs and have already been fixed.

Contributions. This paper makes the following contributions:

● Wepropose a new approach to effectively detect concurrency

bugs in distributed systems. Our approach avoids unneces-

sary repetitive tests by harnessing the rich log information

in previous running histories, which can drastically improve

efficiency.

● We develop CloudRaid, a simple yet effective tool to test

distributed systems. CloudRaid targets live systems by auto-

matically analyzing run-time logs, without instrumentation.

It can be easily adopted and is very effective in detecting

distributed concurrency bugs.

● We extensively evaluated CloudRaid using four represen-

tative distributed systems: Apache Hadoop2/Yarn, HBase,

HDFS, and Cassandra. CloudRaid can finish testing 40 differ-

ent versions of the 4 systems (with 4 workloads in total) in

35 hours, and can successfully detect 28 concurrency bugs.

Among them, there are 8 new bugs, including 3 critical bugs

which have already been fixed by their original developers.

The rest of the paper is organized as follows. Section 2 illustrates

our approach using a real-world example. We present the design

and implementation of CloudRaid in Section 3 and evaluate its

efficiency and effectiveness in Section 4. Section 5 reviews related

work and Section 6 concludes the paper.

2 AN ILLUSTRATION EXAMPLE
The example in Figure 1 depicts the common procedure to create

a new task in Hadoop MapReduce. There is a concurrency bug

MAPREDUCE-3656 in this basic procedure.

The Bug. The two messages, (5) and (9), that trigger the bug

are highlighted in red. In normal execution (Figure 1), the remote

procedure call (RPC) to startContainer finishes execution quickly.
Hence, the ASSIGNED event (message (5)) is always dispatched and

handled before the UPDATE event (message (9)). However, there is

no happen-before order between the two messages. If the UPDATE
event arrives before the ASSIGNED events (due to unexpected delays
inT1, e.g., insufficient resources in the underlying machine running

AM), an error is triggered and the task cannot be created.

The Root Cause. The event handler implements a state machine

for each task, to update its status according to the incoming events.

The state machine expects to always process the UPDATE event after
the ASSIGNED event. Otherwise, an error will be thrown which

leads to job fail. The fix is to introduce smart synchronizations

to guarantee that the ASSIGNED event always arrives before the

UPDATE event.

Among all these messages, the message pair <(5), (9)> is the

root cause of the error. Both messages are handled by a same event
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Figure 1: A real-world example to start a new task in Hadoop2.
AM is the application manager node, NM is the node manager node,
and TASK is the node to run the task. (1) Thread T0 in AM create a
new thread T1, (2) T1 invokes the remote procedure StartContainer
to start a container on NM (Thread T2), (3) In the StartContainer
method, T2 creates another thread T3, (4)the RPC (remote proce-
dure call) to StartContainer returns to T1, (5) After returning from
StartContainer, T1 sends a task ASSIGNED event to the event queue,
(6) the ASSIGNED event is dispatched to the event handler T6, the
TASK state is updated to ASSIGNED, (7) T3 starts a new process to run
the task on node TASK using shell script (Thread T4), (8) T4 invokes
the remote procedure statusUpdate on AM (ThreadT5), (9) InT5, the
statusUpdate method sends a task UPDATE event to the event queue,
(10) the UPDATE event is dispatched to the event handlerT6, to update
the TASK state to UPDATED, (11) Method statusUpdate returns to T4.

handling method, to update the same variable for task status. How

can we automatically pick the message order (9)↣ (5), among all

the rest messages? Let us dig into the technical details.

2.1 Source Code and Runtime Logs
Figure 2 gives the abstracted code snippet of our illustration ex-

ample. Those lines sending messages are highlighted in red. We

call those source locations sending and handling messages static
messages. Hereafter, we use the notation M for a static message,

andMi for its dynamic instance.

There are 3 common patterns of static messages, thread cre-

ation (message (1) in line 3), RPC (remote procedure call, message

(2) in line 11), and event dispatch (message (5) and message (9)

in line 12 and line 38, respectively). For simplicity, the code snip-

pets for sending messages (3) and (7) are not given. The event

handling method EventHandler.handle (line 19) calls method

StateMachine.doTransition, which invokes different callback

functions to handle different types of events. Here we present a

simplified version with callbacks inlined.

The boxed lines log static messages. All messages, except for

the RPC return (message (4) and (11)), and the call to shell script

(message(7)), are logged. A message is often logged at the entry of

its corresponding handler. Message (9) (line 38) follows immediately

after message (8) (RPC to method statusUpdate in line 36). Hence,

a common log (line 37) is introduced to serve both messages for

better performance. In this case, we group the two static messages

together, denoted as (8,9).

The logs consist of constant strings and values of variables. The

above code snippet will execute multiple times at run time, resulting

in multiple dynamic instances per static message, as well as multiple

log instances. Values of variables in the log instances are used to

distinguish each dynamic instance. Figure 3 shows the simplified

runtime logs, where the code snippet is executed twice.

2.2 Methodology
Ideally, we would like to precisely recover runtime message se-

quences from existing logs, as annotated in Figure 3. Each log

instance is mapped to one static message (or a grouped static mes-

sage). Log instances from the same run are grouped together in

order. In reality, we perform source code analysis and log analysis

together, to recover such message sequences. We statically analyze

how static messages are handled and logged. Runtime log instances

can then be mapped to static messages with static analysis infor-

mation. We group logs from the same run together by analyzing

the relation between logged variable values, based on static de-

pendence analysis and their runtime values. Section 3 gives the

technical details.

The recovered message sequences are then mutated for further

testing. In this paper, we focus on the order between a pair of static

messages < P ,S >, where P and S may happen in parallel. Some

message pairs follow a strict happen-before order, e.g., <(1),(2)>,

<(2),(3)>, and <(2),(5)>. The order between them can not be mutated.

Our observations in Section 1 provide the basic guide lines to select

a message ordering P ↣ S , as follows:

● Rule1. Runtime log instance Pi and Si must log related run-

time values of ID variables.

● Rule2. The order Pi ↣ Si have not been exercised, where

Pi and Si are runtime instances with matching values of ID

variables.

Observation1 leads to Rule1. Distributed systems frequently use

values of ID variables as indexes to access shared resources. Thus,

messages logging completely unrelated values of ID variables are

unlikely to access a common shared objects, and unlikely to expose

errors. Rule2 discards these message orderings that have already

been exercised, according to Observation2.
In our example, the message pairs <(3), (5)> and <(8,9),5> may

happen in parallel. All messages record values of related variables in

their logs (Rule1). The message orderings (3)↣ (5), 5↣ (3), and (5)

↣ (8,9) have already been tested, according to the log information.

Hence, we will select the order (8,9)↣ (5) for further testing. The

error can then be triggered.

Discussion. Our method mutates the order between a pair of

messages only. We do not target bugs that occur due to multiple

messages being out of order. Previous studies [30] have shown that

most distributed concurrency bugs are triggered by a single un-

timely message, and only 26% of bugs require more than 2 messages.
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// Thread T0 in AM
1 public void ContainerLauncherImpl.serviceStart() {
2 Runnable t = createEventProcessor(new ContainerLaucherEvent());
3 this.launcherPool.execute(t); // Message (1)
4 }
5 public void ContainerLauncherImpl.createEventProcessor(ContainerLauncherEvent event) {
6 return new EventProcessor(event);
7 }

// Thread T1 in AM, handler of Message(1)
8 public void EventProcessor.run() {

9 LOG .inf o(”Launchinд ” + this .taskAttempt ID) ;

10 ContainerManagementProtocolPBClientImpl proxy = getCMProxy(this.containerMgrAddress);
11 StartContainerResponse response = proxy.startContainer(new StartConReq(...)); // Message (2)
12 this.dispatcher.handle(new TaskAttemptContainerLaunchedEvent(this.taskAttemptID...)); // Message (5)
13 }

// Thread T2 in NM, handler of Message(2)
14 public StartConRes ContainerManagerImpl.startContainer(StartConReq req) {
15 ID containerID = req.getConLauContext().getConId();

16 LOG .inf o(”Star t request f or ” + container ID) ;

17 . . . // create thread T3 via thread pool, message(3)
18 }

// Thread T6 in AM, handler of Message(5) and Message(9) (dispatched by the event dispatcher)
19 public void EventHandler.handle(TaskEvent event){
20 TaskTAttemptEvent ev = (TaskTAttemptEvent) event;
21 if (this.oldState== ASSIGNED&& ev.getType().equals(TA_CONTAINER_LAUNCHED)) {
22 // Handle message (5)
23 TaskAttempt attempt = ev.getTaskAttempt();

24 LOG .inf o(”TaskAttempt ∶ (︀” + attempt .attempt Id + ”⌋︀ usinд container Id ∶ (︀” + attempt .container ID) ;

25 . . . // Update task status
26 } else if (this.oldState== ASSIGNED && ev.getType().equals(TA_CONTAINER_UPDATE)) {
27 // Handle message (9)
28 . . .
29 } // Other cases
30 }

// Thread T3 in NM, handler of Message(3)
31 public void LocalizerRunner.run() {
32 nmPrivateCTokensPath = getLocalPathForWrite(this.localizerId);

33 LOG .inf o(”Writinд credentials to the nmPrivate f ile ” + nmPrivateCTokensPath .toStr inд()) ;

34 . . . // create TASK via Shell script, message (7)
35 }

// Thread T5 in AM, handler of Message(8)
36 public void TaskAttemptListenerImpl.statusUpdate(TaskAttemptID taskAttemptID) {

37 LOG .inf o(”Status update f rom ” + taskAttempt ID) ;

38 this.dispatcher.handle(new TaskAttemptStatusUpdateEvent(. . .)); // Message (9)
39 }

Figure 2: Abstracted code snippet of the example in Figure 1.

This study motivates our approach. Our method can effectively de-

tect distributed concurrency bugs in real-world cloud systems, as

demonstrated in our evaluation.

3 THE CLOUDRAID APPROACH
We implement CloudRaid in WALA [2] via a series of sub-analyses

(Figure 4). Communication analysis statically analyzes how static

messages are handled and logged. Similar to [48, 52], we represent

logging patterns of static messages as regular expressions. Then,
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1 Launching attempt_1514878932605_0001_m_000009_0 // Message (1)
2 Start request for container_1514878932605_0001_01_000011 // Message (2)
3 Writing credentials to the nmPrivate file
$HADOOP_HOME/nm-local-dir/nmPrivate/container_1514878932605_0001_01_000011.tokens // Message (3)
4 TaskAttempt: [attempt_1514878932605_0001_m_000009_0] using containerId: [container_1514878932605_0001_01_000011 //Message (5)
5 Status update from attempt_1514878932605_0001_m_000009_0 // Message (8), immediately followed by (9)

6 Launching attempt_1514878932605_0002_m_000007_0 // Message (1)
7 Start request for container_1514878932605_0002_01_000009 // Message (2)
8 TaskAttempt: [attempt_1514878932605_0002_m_000007_0] using containerId: [container_1514878932605_0002_01_000009] //Message (5)
9 Writing credentials to the nmPrivate file
$HADOOP_HOME/nm-local-dir/nmPrivate/container_1514878932605_0002_01_000009.tokens // Message (3)
10 Status update from attempt_1514878932605_0002_m_000007_0 // Message (8), immediately followed by (9)

Figure 3: Simplified runtime logs of the example in Figure 1.

Table 1: Static Messages < C, F ,L >.

Messages Client site C Message handler F Logging pattern L

(1) 3 EventProcessor.run Launching attempt_*

(2) 11 ContainerManagerImpl.startContainer Start request for container_*

(3) - LocalizerRunner.run Writing . . . $HADOOP.../container_*.tokens

(5) 12 EventHandler.handle TaskAttempt: [attempt_*] . . . [container_*]

(8) - TaskAttemptListenerImpl.statusUpdate Status update from attempt_*

(9) 38 EventHandler.handle Status update from attempt_*

Figure 4: Architecture of CloudRaid.

Log analysis uses the logging patterns to map each runtime log

instance to a static message. ID analysis analyzes relations between
logged values, according to dependences between logged variables

and their run time values (from Log analysis). Messages from the

same run can then be distinguished from other runs and grouped

together. HB analysis statically analyzes the happen-before order

between static messages. Analysis results from HB analysis and

ID analysis are used in Message Pair analysis, to select message

orderings for further testing. Finally, Trigger will instrument the

source code to exercise the selected message orderings.

3.1 Communication Analysis
Communication analysis is the basis for all subsequent analyses. It

represents each static message as a tuple of 3 elements < C, F ,L >,
whereC is the client site to send the message, F is the corresponding

message handler, and L is the regular expression expressing its

logging pattern. Table 1 gives the static messages for our illustration

example (client siteC is represented using source line number). We

target 3 common patterns of static messages: thread creation, RPC,

and event dispatch.

3.1.1 Thread Creation. The client siteC is the call site to t.start()
or ThreadPoolExecutor.execute(t), where t is a Runnable or

Thread object. The message handler F is the run() method of the

thread object referenced by t. To locate the message handler F ,
we backward slice the program to find the object that t points to.
Instead of using a standard pointer analysis [31, 32, 42, 45], we

simply follow the def-use chains since the thread object is often

created right before its execution.

In Figure 2, the call site this.launcherPool.execute(t) (line

3) is the client to start a thread. Slicing t backward, we can reach

the object created at line 6 (new EventProcessor). Hence, the
message handler F is EventProcessor.run (line 8). Static message

(1) is thus represented as <3, EventProcessor.run, L>, where 3 is
the line number and L is the logging pattern to be analyzed.

3.1.2 RPC. RPC allows users to call a remote procedure in the

same way as calling a local function. The client siteC is the local call

site, and the message handler F is the invoked remote procedure.

In common practices (e.g., google protobuf [1]), RPC is realized

via a client class and a corresponding server class with the same

interface. To identify RPC, we require the user to specify the RPC

client classes, as well as the RPC server classes. A RPC server class

can be matched to its corresponding RPC client class by checking

their public APIs. We automatically recognize classes that wrap

RPC client classes using the delegation design pattern [13]. Thus,

given a RPC client site, we can easily find its RPC server class and

the corresponding remote procedure to handle this message.

In Figure 2, ContainerManagementProtocolPBClientImpl is

a RPC client class. The call to proxy.StartContainer (line 11)
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is the client site of RPC. Its corresponding RPC server is iden-

tified as ContainerManagerImpl. Hence, the method handler F
is ContainerManagerImpl.startContainer (line 14). Static mes-

sage (2) is <11, ContainerManagerImpl.startContainer, L>.

3.1.3 Event Dispatch. The client siteC is the call site to enqueue

an event, and the message handler F is the method to handle the

dispatched event. We abstract away the complicated implementa-

tion details of the asynchronous event dispatch mechanism. Here

we require the user to specify the methods to enqueue an event,

and the methods to handle an event. Distinct types of events may

be handled by different handlers. In this case, we check the type of

the enqueued event, and the type of the dispatched event (formal

arguments of the event handler), to match the handler with an

enqueued event of the same type.

In Figure 2, Dispatcher.handle is the method to enqueue an

event, and EventHandler.handle (line 19) is the method to handle

a dispatched event. There are two events, message (5) and mes-

sage (9). Their client sites are the call sites to Dispatcher.handle
method at line 12 and 38, respectively. Both events are handled

by the same handler. Hence, the two messages share a common

message handler EventHandler.handle (line 19).

3.1.4 Message Logging Pattern. We firstly locate a log point (e.g.,

call to Log.info and their wrappers) for each static message. In the

simple case, a message is logged in the entry block of its message

handler (when the message is received and handled). For example,

the log point formessage (1) (<3, EventProcessor.run,L>) is line 9,
and the log point formessage (2) (<11, ContainerManagerImpl.sta-
rt-Container, L>) is line 16. Hence, we search the entry block of

the message handler F , as well as the entry blocks of these meth-

ods invoked in the entry block of F , for a log point. If there exists
multiple log points for a static message, we group them together as

one log point.

Some systems implement a complicated handler for different

types of events. In Hadoop2, the event handler implements a state

machine which executes different cases and invokes different call-

back functions, according to the incoming event type and the cur-

rent state (method EventHandler.handle in Figure 2, line 19). In

this case, we require the user to specify the transition rules of the

state machine, e.g., which callback function handles which type of

event. We can then statically check the type of the enqueued event

(at the client site) to find a matching case in the handler, and locate

the corresponding log point.

In Figure 2, message(5) (<12, EventHandler.handle, L>) and
message (9) (<38, EventHandler.handle, L>) are handled by the

same method EventHandler.handle (line 19). The method exe-

cutes different cases according to the incoming event type. Hence,

we check the event type at the client site for a matching case. Mes-

sage (5) enqueues an event of type TaskAttemptContainerLauched-
Event, which sets its TYPE field to TA_CONTAINER_LAUNCHED in the

constructor. By analyzing this field, we can find a matching case

(lines 22-25). The log point at line 25 is located. Similarly, we can

deduce that message (9) is handled by lines 27 and 28. There is no

log point in its handler. In this case, we will search for a log point

at the client siteC , in the basic block containingC . Hence, line 37 is
regarded as the log point of message (9). Messages share the same

log point are grouped together. In our example, message (9) and

message (8) are grouped together.

The message logging patterns can then be extracted at each

log point. Following previous work [48, 52], logging patterns are

expressed using regular expressions. We analyze the logging state-

ment at each log point, and the tostring method of logged vari-

ables, to statically extract the constant strings in the log message.

Runtime values of logged variable are denoted as *. Table 1 summa-

rizes the logging patterns for each message in Figure 2.

3.1.5 Discussion. We design our communication analysis in

such a way that minimal user specification is required. In our ap-

proach, for RPC, we require the user to specify the RPC client

classes and server classes. For event dispatch, we require the user

to specify the event enqueue method, the event handler, and the

call back functions (if there are any) for different types of events.

The communication analysis then automatically analyzes each mes-

sage client site, identifies its corresponding handler, and locates

the right log point to extract its logging pattern. The precision of

communication analysis can be further improved if the user can

provide detailed annotations to specify the client site, the message

handler, and the logging pattern for each message. Alternatively,

we could get such precise information via instrumentation and

profiling. In the four different distributed systems we studied, our

communication analysis can correctly extract the logging patterns

for the majority of messages, without loss of precision.

3.2 Log Analysis
Log analysis tries to match each runtime log instance to a message

logging pattern. A log instance is represented as a tuple < M,Val >,
whereM is the static message, and Val records the runtime values

of logged variables. Table 2 gives the representation of each runtime

log instance in Figure 3. Logs are ordered according to their time

stamps, the time stamps are calibrated to a centralized time to

compensate for the time differences on distinct nodes, as in [35].

We adopt the approach in [48] tomatch each runtime log instance

to a static message logging pattern efficiently. A reverse index is

built as a hash for each logging pattern, which can be used to

quickly calculate a matching score for each log instance. The higher

the score, the more likely it is a match. For each log instance, we

select 10 message logging patterns with the highest scores, then

parse each log instance according to the 10 logging patterns, to find

a exact match. For each log instance, we also record the runtime

values of its logged variables, as shown in Table 2.

3.3 ID Analysis
ID analysis organizes related log instances in a hierarchy structure,

based on ID Values, i.e., runtime values of ID variables. The hierarchy
structure represents tasks and sub-tasks. In distributed systems,

values of ID variables are commonly used to distinguish distinct

requests and tasks. These variables are wrapped in messages and

propagated to different nodes and threads. Therefore, we regard

a variable as an ID variable if 1) it is propagated from a message,

i.e., formal arguments of message handlers or fields of runnable

objects, and variables accessible from them (via direct or indirect

field dereferencing); and 2) the variable is printed in logs. It is

very difficult to precisely analyze the propagation of ID variables

8
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Table 2: Log instances < M,val >.

Log Instances Static Message Runtime Values

1 (1) attempt_1514878932605_0001_m_000009_0
2 (2) container_1514878932605_0001_01_000011
3 (3) ...container_1514878932605_0001_01_000011
4 (5) attempt_1514878932605_0001_m_000009_0 ; container_1514878932605_0001_01_000011
5 (8,9) attempt_1514878932605_0001_m_000009_0

6 (1) attempt_1514878932605_0002_m_000007_0
7 (2) container_1514878932605_0002_01_000009
8 (5) attempt_1514878932605_0002_m_000007_0; container_1514878932605_0002_01_000009
9 (3) ...container_1514878932605_0002_01_000009
10 (8,9) attempt_1514878932605_0002_m_000007_0

statically when complicated pointer and fields dereferencing are

involved. Hence, we statically analyze an initial set of ID variables,

and use their runtime values to group log instances with same

ID values together. These variables which are propagated from

formal arguments or runnable object fields to a log point, via direct

assignments or field dereferences, are included in the initial set of

ID variables.

In our example (line 33), we cannot statically determine whether

the logged variable nmPrivateCTokensPath is propagated from

formal arguments or not. It is not included in the initial set of ID

variables. However, the log can still be grouped according to its

runtime value, which can be matched to an already existing ID

value (containerID logged at line 16).

Definition 1. ID value V1 and ID value V2 are related if there
exists a log instance < M,Val >, such that both V1 ∈ Val and V2 ∈
Val hold. Let ℒ be the set of log instances of static message M . ID
value V1 is a sub-ID of V2 if for any log instance < M,Val >∈ ℒ,
V1 ∈ Val Ô⇒ V2 ∈ Val , but not vice versa.

Log instances with a same ID value are grouped together to

perform a task. A tasks is indexed with one ID value, and can

be further divided into sub-tasks. Two tasks are related if their ID

values are related. One task is a sub-task of another, if its ID variable

is a sub-ID of another.

For our example, the log instances in Table 2 are organized into

two groups. Each group consists of two related tasks, indexed by

the runtime values attempt_*, and container_*, respectively.

3.4 HB Analysis and Message Pair Analysis
HB analysis analyzes the happen-before relation between static

messages. We consider two simple types of happen-before relation.

Given static message P ∶< CP , FP ,LP >, and S ∶< CS , FS ,LS >. If CS
is in method FP , then P happens before S . If CP dominates CS and

CP is a RPC client site, then P happens before S . We compute the

transitive happen-before relation for all static messages.

Message pair analysis selects the order P ↣ S for further testing.

If P happens before S or S happens before P , then the order is either

infeasible or always holds, and it will not be selected. We check

whether P and S are related or not, and whether the order P ↣ S
have been exercised or not, by comparing their log instances in a

pair-wise manner. Given log instance Pi ∶< P ,− > and log instance

Si ∶< S,− >. If Pi and Si belongs to the same or related tasks, then

P and S are related. If Pi and Si are related and Pi is logged before

Si , then P ↣ S has already been tested. The order P ↣ S will be

selected if P and S are related, and the order has not been exercised.

3.5 Trigger and Error Report

Figure 5: Trigger order P ↣ S , i.e., flip the order S ↣ P .

The trigger tries to exercise the selected message order P ↣ S by

instrumenting the system in such a way that a dynamic instance

Si can wait until Pi is handled. We introduce an prologue and

epilogue for both S and P . The prologue is instrumented before

the message is handled, and the epilogue is introduced after the

message is handled. For RPC and thread creation, the prologue and

epilogue are introduced at the entry and exit of the message handler,

respectively. For event dispatches, the prologue is introduced at the

client site before the event is enqueued, and the epilogue is inserted

at the exit of the message handler. The reason is that the prologue

will block execution. If the event handler is blocked, no event can

be dequeued and the event queue will soon be occupied.

As shown in Figure 5, we maintain a state machine at runtime.

Initially, neither P nor S is executed. The start state is S0. When

executing S , the prologue of S sends a Sstart event to our runtime.

The state machine is updated to state S1, and S will sleep for a time

interval T + δ , waiting for P to be executed. The interval T is set

to be the largest interval between related instances of Pi and Si , in
previous executions. We introduce a δ to compensate for the delay

of our instrumented code, and the delay to handle message P . As a

9
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result, P will have a large chance to be handled while S is waiting.

When P starts to execute, the prologue of P sends a Pstart event,
and the state machine is updated to S2. After P finishes execution,

the epilogue of P sends a Pend event, the state is updated to S3. After
waiting for T + δ , the prologue of S sends a Timeout event , then
continues execution. If P have already finished execution (state S3),
the message order can be successfully exercised. The state reaches

the final state S4 when S finishes execution. Otherwise, if P does

not arrive in time (state S1), or has not finished execution (state

S2), the runtime state is reset to its initial state, suggesting that we

have not successfully trigger the order.

Finally, after execution, CloudRaid reports an error in the fol-

lowing 3 cases: 1) system crash, 2) job hang or fail, and 3) there

exists uncommon error level logs in the log file. Currently, we do

not report silent errors which lead to unexpected behaviors that are

difficult to detect, e.g., silent data corruptions [10]. How to develop

test oracles to automatically detect such unexpected behaviors is

an important topic worth separate investigation.

4 EVALUATION

Table 3: Systems under testing.

System # CloudRaid code changes Workload

Hadoop2/Yarn 48 wordcount + kill

HDFS 18 putfile + reboot

HBase 25 write + node crash

Cassandra 17 write

We apply CloudRaid to four representative real-world distributed

systems: ApacheHadoop2/Yarn (distributed computing framework),

HDFS (distributed file system ), HBase (distributed key-value stores),

and Cassandra (distributed key-value stores). Table 3 presents the

4 systems. Column 2 gives the code changes required (in #LOC) to

adapt CloudRaid to a new system. On average, we need to apply

27 lines of code changes for each system, to specify its commu-

nication patterns. In this experiment, we use 4 failure-triggering

workload described in [30] and run the systems using their default

configurations (including default logging configurations). These

workloads are also common workloads, but errors may be triggered

by untimely communication among nodes.

Each system runs the workload 20 times, to generate runtime

logs. CloudRaid then performs its analyses using these logs. We

have experimented with larger sets of logs (up to 50 runs), and no

noticeable difference is observed. All the experiments are performed

on a cluster with three identical nodes. Each node has a CentOS

6.5 system on an Intel(R) Xeon(R) E7-4809 processor with 32 GB

of memory. The evaluation will answer the following research

questions:

● RQ1.Howaccurate canCloudRaid extractmessage sequences

from runtime logs?

● RQ2. How effective is CloudRaid in detecting bugs, can it

detect new bugs?

● RQ3.Howmuch does CloudRaid improve testing efficiency?

Figure 6: Number of static messages (SM), SM with logs (SMLoд ),
SM with logs and IDs (SMLoд+ID ), and SM with logs and IDs that
have been executed.

4.1 RQ1: Accuracy
Figure 6 summarizes the identified static messages in the 4 sys-

tems. There are 393 static messages in Hadoop2/Yarn, and 82 static

messages in HBase. Our communication analysis can successfully

analyze the logging pattern for more than 60% of static messages

in all systems, except for HDFS (46.8%). We manually inspected

these static messages without logging patterns. Their logs are of-

ten optimized out for performance reasons. HDFS frequently reads

file systems without logging, hence a large percentage of static

messages in HDFS do not have a logging pattern.

ID analysis can successfully find an ID value in 84.8% of the static

messages for Hadoop2/Yarn, and in 52.5% of the static messages

for HBase. ID values can effectively distinguish log instances from

different runs. However, only 39.2% static messages in HDFS, and

22.1% static messages in Cassandra have an ID value. HDFS fre-

quently invokes RPC to get or set the state of name node, without ID

values. Cassandra mainly prints logs during system startup. Since

we target live systems, we process logs for user requests. We further

analyze these message logs without ID values: 78.4% of them print

variables such as size, 16.5% are daemon process printing service

start or stop messages, and the rest 5.1% are due to bad log quality.

Table 4: Statistics of runtime logs. "#Log instances" is num-
ber of different types of runtime log instances. "#Static mes-
sages" is the number of messages covered by runtime logs.

System #Log instances #Static messages

SM SMID SM + NonSM SM SMID

Hadoop2/Yarn 11519 8539 15813 122 67

HDFS 7777 7750 8073 22 9

HBase 9663 5753 10614 59 18

Cassandra 4417 104 14263 29 4

Table 4 gives the number of runtime log instances (Columns

2-4), and the number of static messages covered by runtime logs

(Columns 5 and 6). Let us compare Column 2 with Column 4. In

all benchmarks, except for Cassandra, the majority of runtime log

instances record message events (72.8% for Hadoop2/Yarn, 96.3% for

HDFS, 91.0% for HBase). In comparing Column2 to Column 3, we

find that most message log instances also record ID values (74.1%
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for Hadoop2, 99.6% for HDFS, and 60% for HBase). These systems

provide valuable information for CloudRaid to accurately recover

the runtime message sequences. Cassandra is an exception, with

much fewer messages being logged and ID values rarely being used

in the logs. The reason is that CloudRaid process request logs, while

Cassandra prints most of its logs during the system startup process.

As a result, only 0.73% runtime log instances in Cassandra record a

message event with ID values, which is also shown in Figure 6.

The runtime log instances covers about 32% of static messages

(Column 6 in Table 2, and Figure 6). The other uncovered part may

need a distinct workload (e.g., alter table for HBase), or a different

configuration (e.g., to execute a distinct resource scheduling model

in Yarn), or it is in an error handling module difficult to reach.

Discussion. The accuracy of message sequences extracted by

CloudRaid differs in different systems. Overall, Hadoop2/Yarn pro-

vides the most accurate information in its logs. CloudRaid can

analyze and process 72.8% of the runtime logs, and it exercises

more static messages than the other 3 benchmarks (Column 6 in

Table 4). Cassandra rarely logs ID values. CloudRaid can only ana-

lyze 0.73% of runtime log instances, and cannot accurately recover

its runtime message sequences from logs.

4.2 RQ2: Effectiveness
We evaluate how effective CloudRaid is in testing known bugs, as

well as its ability in detecting new bugs.

Table 5: Bug detection results against TaxDC [30].

MR-3656 MR-3274 MR-4637 MR-3596

Detected MR-2995 MR-4751 MR-4607 MR-5358

CA-5631 HBase-4539 HBase-6070 HBase-5816

Not Detected
MR-3006 MR-4099 MR-5009 MR-3721

MR-4842 HBase-6537 HBase-10257 HBase-8940

4.2.1 Finding existing bugs. We evaluate CloudRaid against the

TaxDC Benchmark suite [30]. The 20 benchmarks in Table 5 are

selected because we can manually trigger a failure by changing

the order of a message pair in these benchmarks. We skip those

benchmarks in TaxDC if we cannot reproduce the bug manually,

or if it involves timely hardware failure, or if it requires to reorder

multiple pairs of messages together. CloudRaid can report 12 of

the 20 benchmarks automatically. In 6 of the 8 undetected bench-

marks (MR-5009, MR-3721, MR-4842, HBase-6537, HBase-10257,

and HBase-8940), their messages are not logged. Hence, CloudRaid

fails to report errors in these benchmarks. We argue that the log

quality needs to be further improved in this case, to help better

diagnose this type of failure. The two benchmarks, MR-3006 and

MR-4099, require instrumentation in the middle of their message

handlers, which cannot triggered by CloudRaid. A more sophisti-

cated instrumentation strategy can help to trigger such errors.

4.2.2 Detecting new bugs. We evaluate the ability of CloudRaid

in detecting new bugs using the four systems in Table 3. For each

system, we select 10 different versions (the latest version, the oldest

version, and 8 random selected versions). We apply CloudRaid to

test each version. The same bug appearing in different versions is

reported as one bug.

Table 6: Bug detection results against the systems in Table 3.

System #Bugs: new/all

Order Violation Atomicity Violation Total

Hadoop2/Yarn 6/19 1/2 7/21

HDFS 0/3 0/0 0/3

HBase 1/2 0/2 1/4

Cassandra 0/0 0/0 0/0

Total 7/24 1/4 8/28

CloudRaid can successfully find 28 bugs, including 20 already

tracked bugs and 8 new bugs.Most of the bugs detected byCloudRaid

are message order violation bugs (24 out of 28), which is expected.

CloudRaid also detects 4 atomicity violation bugs. By reordering

messages, CloudRaid can impact other message handlers and make

them execute concurrently.

CloudRaid detects themost number of bugs (21 out of 28, Column

4 in Table 6) in Hadoop2/Yarn, and none in Cassandra. Cassandra is

the benchmark with the least log information (Figure 2 and Table 2).

The limited log information largely restricts CloudRaid’s ability in

detecting bugs.

Table 7: New bugs detected. All bugs are confirmed by the
original developers, and 3 of them are already fixed.

Bug ID type status Patched? Symptom

YARN-6948 Order Fixed yes Attempt fail

YARN-6949 Order Unresolved no Wrong state

YARN-7176 Atomicity Unresolved yes Cluster down

YARN-7563 Order Unresolved yes Resource leak

YARN-7663 Order Fixed yes Job fail

YARN-7726 Order Unresolved yes Wrong state

YARN-7786 Order Fixed yes Null Pointer

HBase-19004 Order Unresolved no Data loss

Table 7 summarizes the 8 new bugs detected by CloudRaid. These

new bugs may lead to serious failure such as cluster down (YARN-

7176) and data loss (HBase-19004). By examining how CloudRaid

triggers a bug, we can easily find its root cause and provide a patch.

We have provided patches to 6 of the 8 bugs, and 3 of them have

been accepted by their original developers.

Figure 7: New atomicity violation bug detected by CloudRaid. Mes-
sages and their handlers triggering the bug are highlighted in red.
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YARN-7176. CloudRaid detects a new atomicity violation bug

in Hadoop2/Yarn, as depicted in Figure 7. It successfully flips the

normal execution order SstartAMContainer ↣ PstopAMContainer, so
that the message PstopAMContainer is handled first. The message

handler FstopAMContainer sends an UPDATE_APP message. As a re-

sult, its message handler FUPDATE_APP executes concurrently with

the handler FstartContainer. A race condition is triggered by their

concurrent execution and an ArrayIndexOutBoundsException is

thrown, crashing the Yarn daemon process.

YARN-7663. In YARN-7663, CloudRaid triggered an InvalidSta-
teTransitionException error after reordering the STARTmessage

with the KILLmessage. Hence, in our initial patch, we simply ignore

the STARTmessage if it arrives after the KILLmessage. The original

developer accepted our fix, saying "Ignoring the START event seems
to be appropriate here". However, he made another request "Could
you add a unit test of the new start-after-killed transition logic"?
We then prepared our second patch with a unit test. Interestingly,

the unit test triggered another two bugs (YARN-7726 and YARN-

7703), both are similar InvalidStateTransitionException er-

rors in the state machine implementation of YARN. Although the

developers of YARN have tested the state machine implementa-

tion with a large set of unit tests, there are still numerous subtle

cases not handled. After another 4 different versions of patches (2

months after we reported the bug), the developer finally accepted

our patch and submitted it to the latest trunk and some previous

trunks (branch-2, branch 2.8, and branch 2.9).

Discussion. The effectiveness of CloudRaid largely relies on the

log quality of the system under testing. For systems with rich log

information (Hadoop2/Yarn and HBase), it is very effective. How-

ever, if the system only provides limited logs (Cassandra), its ability

is largely restricted.

4.3 RQ3: Efficiency

Table 8: Analysis and testing times of CloudRaid.

System Profiling(s) Analysis(s) Trigger(s)

Hadoop2/Yarn 648.0 131.3 6990.2

HDFS 646.0 60.0 828.3

HBase 1309.0 63.3 1368.0

Cassandra 263.1 112.3 60.3

Table 8 reports the times in testing the latest versions of different

systems with CloudRaid. Column 2 is the time in profiling each

system, i.e., running each workload 20 times. In practice, we can

get logs from live systems without profiling. Column 3 is the total

analysis time, including the time to analyze the source code, and

the time to parse all runtime logs from the 20 runs. Column 4 is the

testing time to trigger all selected orderings.

CloudRaid is very efficient. It finishes its analyses in 2 minutes

for all benchmarks (Column 3). In the testing phase (Column 4),

CloudRaid finishes testing Hadoop2/Yarn in 6990.2 second (1.94

hours). Cassandra takes less than 1 minute to test. It is because

CloudRaid can only extract very limited information from its run-

time logs (Table 2), resulting in only 4 message orderings to be

tested.

Table 9: Message orderings pruned by each analysis. #Total
is the number of messages orderings. HB is the percentage
of orderings pruned by HB analysis. Order is the percentage
of orderings already exercised. ID is the percentage of order-
ings where messages do not log related ID values.

% of Pruned

System #Total HB Order ID All

Hadoop2/Yarn 4489 1.0% 11.1% 81.5% 93.6%

HDFS 81 2.5% 45.7% 51.9% 85.2%

HBase 324 2.5% 57.7% 34.3% 94.4%

Cassandra 16 0.0% 75.0% 0.0% 75%

Table 9 shows how CloudRaid achieves efficiency by pruning

message orderings using different analyses. Note that here we al-

ready filtered out these static messages not logged with ID values

(Column 2). Otherwise, the total number of message orderings to be

tested is 154,449 for Hadoop2/Yarn. Overall, CloudRaid successfully

prunes 93.6% of total message orderings for Hadoop2/Yarn, and

94.4% for HBase (Column 6). HB analysis only prunes very few mes-

sage orders. It is very difficult to precisely analyze the happen before

order statically, due to the complexity in these systems. CloudRaid

efficiently prunes most message orderings by skipping those that

have already been exercised (Column 4), and those between unre-

lated messages (Column 5). We randomly tested 50 pruned message

orderings, and cannot find any new bugs. This confirms our ob-

servation and assumption: messages orderings pruned away by

CloudRaid are unlikely to expose errors.

When CloudRaid tries to exercise all message orderings, we find

that only 24.6% of them are triggered. For these message orders not

exercised, 82.1% of them do have strict happen before relation but

our HB analysis fails to analyze the happen before order due to

unrecognized control or data dependencies. Hence, a more sophis-

ticated may-happen-in-parallel analysis [53] can further improve

efficiency. The other 17.9 % of them are due to the fact that our

current workload does not cover the specific ordering.

Discussion. CloudRaid drastically improves efficiency by pruning

away message orderings that are unlikely to expose errors. We

manually tested these message orderings pruned by CloudRaid, and

can verify that they do not expose errors. Nevertheless, it trades

soundness for efficiency and we cannot guarantee that the pruned

message order will not trigger any error.

5 RELATEDWORK
We summarize previous works in detecting distributed concurrency

bugs, and existing log analysis techniques.

Distributed concurrency bug detection. There is a large body of

research on distributed system model checkers [19, 27, 29, 33, 41].

These systems intercept messages in the system at runtime, then

permute their orderings exhaustively. Although powerful, they

face the state-space explosion problem. Recent tools [19, 29] have

adopted various state reduction techniques, to address this problem.

However, the more events included, the larger the state space to be

explored. It takes up to days to explore some of the state space [29].

Liu et al. [34] recently extended classic race detection techniques

for multi-threaded programs [11, 21, 25, 37, 38, 40], to detect race
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conditions in distributed systems. Their technique instruments

memory accesses and communication events in the target system

to collect runtime traces during execution. An offline analysis is

performed to analyze the happen-before relation between memory

accesses, using a sophisticate happen-before model customized to

distributed systems. Concurrent memory accesses that may trigger

exceptions are regarded as harmful data races. A trigger is employed

to further verify the detected race conditions. CloudRaid differs

from their approach in that we mine logs to recover runtime traces,

without instrumentation. In addition, we target errors triggered by

reordering messages, as those distributed system model checkers,

instead of memory accesses only.

Fault injection techniques [8, 14, 16, 17, 22–24, 43, 46] are com-

monly used to test the resilience of distributed systems. Existing

techniques focus on how to inject fault at different system state, to

expose bugs in the fault recover handler. CloudRaid can be applied

together with these techniques, to detect fault-related concurrency

bugs more effectively.

Log Analysis. Many researchers [3, 4, 6, 9, 12, 26, 35, 36, 43, 44, 49]

mine logs to extract various information, including temporal in-

variants [3, 4], user request flow [36, 49], system architecture [35],

timing information [6], etc. The mined information can then be ap-

plied to help with better understanding, monitoring, and analyzing

the complicated distributed systems.

Xu et al. [48] mine console logs from a system and apply ma-

chine learning techniques to detect anomaly executions. Mined

information such as logged values and logging frequencies are visu-

alized to help user diagnose anomaly behavior. DISTALYZER [39]

compares logs from abnormal execution and normal execution to

infer the strongest association between system components and

performance. Iprof [52] extracts request ID and timing information

from logs to profile request latency. Stitch [51] organizes log in-

stances into tasks and sub-tasks, by analyzing relations between

logged ID variables, to profile different components in the entire

distributed software stack. CloudRaid mines logs to uncover in-

sufficiently exercised message orderings, to effective detect new

concurrency bugs.

6 CONCLUSION
We present CloudRaid, a simple yet effective tool to detect dis-

tributed concurrency bugs. CloudRaid achieves efficiency and effec-

tiveness at the same time by analyzing message orderings that are

likely to expose errors from existing logs. Our evaluation shows

that CloudRaid is easy to be adopted and is very effective in detect-

ing bugs. It finishes testing 40 versions of 4 different systems in 35

hours, and have successfully found 28 bugs, including 8 new bugs

that have never been reported before.
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