
Scaling Up the IFDS Algorithm with Efficient
Disk-Assisted Computing

Haofeng Li†‡, Haining Meng†‡, Hengjie Zheng†‡, Liqing Cao†‡, Jie Lu†, Lian Li†‡∗ and Lin Gao§
† State Key Laboratory of Computer Architecture, Institute of Computing Technology,

Chinese Academy of Sciences, Beijing, China
‡ University of Chinese Academy of Sciences, Beijing, China

§ TianqiSoft Inc, China
† {lihaofeng19b, menghaining, zhenghenjie, caoliqing19s, lujie, lianli}@ict.ac.cn § gaolin@tianqisoft.cn

Abstract—The IFDS algorithm can be memory-intensive, re-
quiring a memory budget of more than 100 GB of RAM for
some applications. The large memory requirements significantly
restrict the deployment of IFDS-based tools in practise. To
improve this, we propose a disk-assisted solution that dras-
tically reduces the memory requirements of traditional IFDS
solvers. Our solution saves memory by 1) recomputing instead
of memorizing intermediate analysis data, and 2) swapping in-
memory data to disk when memory usages reach a threshold.
We implement sophisticated scheduling schemes to swap data
between memory and disks efficiently.

We have developed a new taint analysis tool, DiskDroid, based
on our disk-assisted IFDS solver. Compared to FlowDroid, a
state-of-the-art IFDS-based taint analysis tool, for a set of 19
apps which take from 10 to 128 GB of RAM by FlowDroid,
DiskDroid can analyze them with less than 10GB of RAM at a
slight performance improvement of 8.6%. In addition, for 21 apps
requiring more than 128GB of RAM by FlowDroid, DiskDroid
can analyze each app in 3 hours, under the same memory
budget of 10GB. This makes the tool deployable to normal
desktop environments. We make the tool publicly available at
https://github.com/HaofLi/DiskDroid.

Index Terms—IFDS, taint analysis, memory consumption,
scalability.

I. INTRODUCTION

The IFDS (inter-procedural, finite, distribute, subset) anal-
ysis framework by Reps et al. [1] solves inter-procedural,
context-sensitive, and flow-sensitive analysis of finite dis-
tribute subset problems where the set of data-flow facts D
is finite and the transferring functions F (in 2D 7→ 2D) are
distributive over the meet operator u (either union or inter-
section). Such frameworks have been implemented in various
analysis and compilation frameworks, including WALA [2],
SOOT [3], and LLVM [4]. Those analysis frameworks are
instrumental tools to solve a wide range of problems, such as
pointer analysis [5], [6], [7], [8], taint analysis [9], [10], [11],
[12], slicing [13], bug detection[14], [15], [16], [17], and shape
analysis [18].

Existing implementations adopt the Tabulation algo-
rithm [19], which solves a generalized graph-reachability prob-
lem (reachability along inter-procedurally realizable paths)
in a super-graph extended from the inter-procedural control
flow graph (CFG) of a program. Nodes in the super-graph

∗Corresponding author.

are elements in the finite domain of data-flow facts at each
program point (node < n, d > denotes the data-flow element
d ∈ D at program point n), and edges E represent transferring
functions. The data-flow fact d holds at n if and only if
node < n, d > is reachable from the start node < s0,0 >
where s0 is the entry point of the program. Intra-procedurally,
it amounts to solve a general graph reachability problem.
Inter-procedurally, the analysis requires that data-flow facts
propagated from a callsite to an invoked callee function f
(via a call edge to the CFG of f) can only return to the same
callsite, i.e., context-sensitively by matching call and return
edges.

The Tabulation algorithm has worst-case time complexity
of O(|E||D|3) and space complexity of O(|E||D|). It can
be compute- and memory-intensive when the program size
(|E|) or the domain of data-flow facts (|D|) is large. For
example, the study [20] applied FlowDroid [9] (an IFDS-
based taint analysis tool) to a set of 2,950 Android apps on a
computer server with 730GB of RAM and 64 Intel Xeon CPU
cores, 16 apps are unanalyzable because the IFDS solver of
FlowDroid (with even many compromises made) takes more
than 24 hours to finish and uses all the memory. The sparse
IFDS algorithm [10] can significantly improve the run-time
performance (by 22.0X) and memory footprints (by 3.7X)
of the original IFDS algorithm. However, it still requires a
memory budget of 220GB per app in its experiments.

The aim of this work is to scale up IFDS algorithms so that
they can run on normal desktop environments with a memory
budget of less than 16GB. Two memory-saving strategies
are presented. The first recomputes intermediate analysis data
instead of memorizing them in memory, and the second swaps
in-memory data (generated by the IFDS algorithm) to disk
when memory usages exceed a threshold. Efficient scheduling
schemes are implemented to compensate for the extra cost
in swapping data in and out of memory. Existing disk-based
analyses [21], [22] leverage graph systems [23], [24], [25]
to divide a large graph into chunks and process one chunk in
memory at a time. On the contrary, we propose a disk-assisted
approach to extend existing in-memory analysis algorithms
with efficient swapping schemes.

We have implemented a disk-assisted IFDS solver and
applied it to taint analysis for finding information leaks in

978-1-7281-8613-9/21 c© 2021 IEEE CGO 2021, Virtual, Republic of Korea

Accepted for publication by IEEE. c© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

236

https://github.com/HaofLi/DiskDroid

Android apps. FlowDroid [9] is a state-of-the-art taint analysis
tool based on a multi-threaded IFDS solver. We develop
a new tool, DiskDroid, by extending FlowDroid with our
disk-assisted IFDS solver. DiskDroid can successfully analyze
large apps within a memory budget of 10GB, in contrast to
FlowDroid which often requires more than 128GB of RAM.
In addition, DiskDroid achieves a performance speedup of
8.6% over FlowDroid, despite given a much smaller memory
budget. We make the tool available at https://github.com/
HaofLi/DiskDroid.

This paper makes the following contributions:
• We present a new disk-assisted approach to scale up

IFDS algorithms. The approach optimizes memory usages
via recomputation and efficient disk swapping. These
optimizations are applicable to both IFDS solvers and
IDE solvers.

• We implement DiskDroid, a taint analysis tool based on
our disk-assisted IFDS solver for detecting information
leaks in Android apps. The tool is publicly available at
https://github.com/HaofLi/DiskDroid.

• We have evaluated DiskDroid against FlowDroid on a set
of 2,053 open source apps from F-Droid [26]. Among
the 2,053 apps, 19 apps require 10GB to 128GB of
RAM for FlowDroid and DiskDroid analyzes them under
the memory budget of 10GB, with a slight performance
improvement of 8.6%. For 21/162 apps which take more
than 128GB of RAM by FlowDroid, DiskDroid can
analyze them in 3 hours, given a memory budget of
10GB.

The rest of the paper is organized as follows. Section II
overviews the classical IFDS algorithm and its application to
taint analysis. Section III highlights the memory consumption
problem of existing IFDS solvers. Section IV illustrates our
disk-assisted approach. We evaluate the effectiveness and
efficiency of our approach in Section V. Section VI reviews
related work and Section VII concludes this paper.

II. BACKGROUND

We review the classical Tabulation IFDS algorithm and
study FlowDroid as an instantiation of the algorithm in solving
taint analysis problems.

A. The Tabulation Algorithm

In the original formulation by Reps et al. [1], an instance IP
of an IFDS problem is a five-tuple, IP = (G∗, D, F,M,u),
where G∗ = (N∗, E∗) is the inter-procedural CFG (ICFG) of
the program, D is a finite set of data-flow facts, F ⊆ 2D 7→ 2D

is a set of distributive functions, M : E∗ 7→ F is a map from
edges in the ICFG to data-flow functions, and the meet u is
either union or intersection.

The ICFG G∗ consists of a collection of CFGs, G0, G1, G2

... (one per function), where G0 represents the entry function
of the program. By convention, each CFG Gp consists of a
unique entry node sp and a unique exit node ep. A callsite
is split into two nodes, a Call node and a retSite node. At a
callsite, inter-procedural call edges connect the Call node to

Algorithm 1: The Tabulation IFDS Algorithm re-
produced from [19], with some notational changes
[1] Globals: PathEdge, WorkList, Incoming, EndSum, S;

Algorithm Tabulate(G#
IP):

[2] Let (N#, E#) = G#
IP

[3] PathEge← {< s0, 0 > → < s0, 0 >}
[4] WorkList← {< s0, 0 > → < s0, 0 >}
[5] S ← ∅
[6] ForwardTabulateSLRPs()
[7] for n ∈ N∗:
[8] Xn ← {d2 ∈ D|∃d1 ∈ (D ∪ {0})} s.t.,

< sproc(n), d1 > → < n, d2 > ∈ PathEdge}
[9] Procedure Prop(e):
[10] if e /∈ PathEdge:
[11] Insert e into PathEdge; Insert e into WorkList

[12] Procedure processCall(< sp, d1 > → < n, d2 >):
[13] for d3 s.t. < n, d2 > → < scalledProc(n), d3 > ∈

E#:
[14] Prop(< scalledProc(n), d3 > →

< scalledProc(n), d3 >)
[15] Incoming[< scalledProc(n), d3 >] ∪= < n, d2 >
[16] for < ep, d4 > ∈

EndSum[< scalledProc(n), d3 >]:
[17] for d5 s.t. < ep, d4 > →

< retSite(n), d5 > ∈ E#:
[18] S# ∪= < n, d2 > →

< retSite(n), d5 >
[19] for d3 s.t. < n, d2 > → < retSite(n), d3 > ∈

{E# ∪ S}:
[20] Prop(< sp, d1 >→< retSite(n), d3 >)

[21] Procedure processExit(< sp, d1 > → < n, d2 >):
[22] EndSum[< sp, d1 >] ∪= < ep, d2 >
[23] for < c, d4 > ∈ Incoming[< sp, d1 >]:
[24] for d5 s.t. < ep, d2 > → < retSite(c), d5 >

∈ E#:
[25] S ∪= < c, d4 > → < retSite(c), d5 >
[26] for d3 s.t., < sproc(c), d3 >→< c, d4 >

∈ PathEdge:
[27] Prop(< sproc(c), d3 > →

< retSite(c), d5 >)
[28] Procedure ForwardTabulateSLRPs():
[29] while WorkList 6= ∅:
[30] Pop edge < sp, d1 > → < n, d2 > from

WorkList
[31] switch n:
[32] case n ∈ Callp:
[33] processCall(< sp, d1 > → < n, d2 >)
[34] case n = ep:
[35] processExit(< sp, d1 > → < n, d2 >)
[36] case n ∈ (Np − Callp − {ep}):
[37] for m, d3 s.t. < n, d2 > → < m, d3 >

∈ E#:
[38] Prop(< sp, d1 > → < m, d3 >)

the entry node of its callee functions, and return edges connect
exit nodes of callee functions to the retSite node. Thus, data-
flow facts can propagate inter-procedurally via call and return
edges.

To solve IP context-sensitively as a graph reachablility
problem, G∗ is extended to an exploded super-graph G#

IP =

237

https://github.com/HaofLi/DiskDroid
https://github.com/HaofLi/DiskDroid
https://github.com/HaofLi/DiskDroid

(N#, E#) such that N# = N∗ × (D ∪ {0}) and E# =
{< m, d1 > → < n, d2 > — m → n ∈ E∗, d2 ∈ f(d1)}.
Note that here 0 signifies an empty set of facts such that new
data-flow facts can be generated at a program point, and f ∈ F
is the flow function of the instruction at m. In the formulation,
flow function f is replaced with a graph representation of
M(m → n). For efficiency, G#

IP is usually built from G∗

during the analysis.
Algorithm 1 reproduces the Tabulatation IFDS algo-

rithm [19]. In the algorithm, Callp is the set of call statements
in function p, calledProc(n) denotes the callee function
invoked at call statement n and retSite(n) is its corresponding
return site. For a node n ∈ G∗, proc(n) identifies its
containing function.

The input of the algorithm is the super-graph G#
IP . The

Tabulation algorithm maintains a set of data structures sum-
marized below:
• PathEdge records the set of path edges, representing a

subset of the same-level realizable paths in G#
IP , where

the source is a node of the form < sp, d1 > reachable
from node < s0,0 >. In other words, a path edge <
sp, d1 > to < n, d2 > represents the suffix of a realizable
path from < s0,0 > to < n, d2 >.

• S records the set of summary edges, which summarize
inter-procedural data-flow facts across function bound-
aries, i.e., realizable paths from callsites to their corre-
sponding return sites.

• Incoming records the set of nodes < sp, d > reachable
from < s0, 0 >, and their predecessors.

• EndSum records the set of path edges < ep, d2 > from
node < sp, d1 >.

The Tabulation algorithm is a worklist algorithm that accu-
mulates sets of path edges and summary edges until a fixed
point. Starting with < s0,0 > → < s0,0 > (lines 3 - 5),
procedure ForwardTabulateSLRPs (line 6) collects all
possible path edges in PathEdge with a case analysis (lines
31 - 38). There are 3 cases: 1) the inter-procedural data-
flows entering into a function (lines 32 and 33), handled
by procedure processCall (lines 12 - 20), 2) the inter-
procedural data-flows leaving a function (lines 34 and 35),
handled by procedure processExit (lines 21 - 27), and 3)
the intra-procedural data-flows within a function (lines 36 -
38). Note that Incoming and EndSum are introduced in [19]
to process inter-procedural flows more efficiently. Incoming is
updated when entering into a function (line 15), and is queried
when leaving a function (line 23). EndSum is updated when
leaving a function (line 22), and is queried when entering into
a function (line 16).

The algorithm terminates when no more path edge can be
collected and the meet-over-all-valid-paths solution to IP at
program point n is then computed as Xn (lines 7 and 8).

B. FlowDroid

FlowDroid is a state-of-the-art IFDS-based taint analysis
tool. Figure 1 depicts how the tool applies IFDS to solve
taint analysis problems. Each node in the super-graph G#

IP

represents a data-flow fact (i.e., a tainted access path with
fixed length) at a program point and edges propagate facts
along the ICFG of the program. The meet operator u is ∪
since an access path is regarded as tainted at a joint point if
it is tainted in any of its incoming control-flow paths.

Data-flow facts are generated by assigning a tainted value to
another (e.g., line 8 generates access path o1.g by assigning
the tainted value a to o1.g), and killed by reset it to an
untainted value. Those transferring functions are encoded as
edges in G#

IP . For instance, the transferring function at line
8 is represented by the edge < 8•,a > → < 8•,o1.g >,
where 8• and 8• denote the program points before and after
the statement at line 8, respectively. There are four types of
edges: normal flow edges to propagate data-flow facts within
a procedural; and call, return, and call-to-return edges to
propagate data-flow facts inter-procedurally.

FlowDroid performs a forward IFDS pass to propagate
tainted access paths together with an on-demand backward
IFDS pass for discovering aliases, until a fixed point is
reached. In Figure 1, a new tainted access path a is generated
at line 2 (< 2•, 0 > → < 2•,a >) and o1.g is tainted by
a at line 8 (< 8•,a > → < 8•,o1.g >) as computed by
the forward IFDS pass. At line 8, when storing a to o1.g,
FlowDroid starts a backward IFDS pass to search for the
aliases of o1.g, resulting a new tainted access path o2.f.g
generated by the statement o2.f = o1 (line 5). The new
access path is then propagated forwardly and recognized as
being tainted just after line 8. As a result, both b and c are
tainted at the sink point at line 14 and 15, respectively.

Implementation: FlowDroid is implemented in SOOT
and operates on SOOT’s Jimple IR. The class AccessPath
implements access paths. All access paths are abstracted with
k-limiting, where by default, k is set to 5. In the underlying
IFDS solver, the path edge < sp, d1 > → < n, d2 > is
implemented by an object of class PathEdge which contains
3 fields for the source fact d1, target fact d2, and the target
location n, respectively. Note that the source location sp can
be uniquely identified by n. The set of path edges PathEdge
is stored in a hash map whose key refers to a path edge and
value is its target node. The set of summary edges S are not
explicitly stored and they are handled the same as normal intra-
procedural flow edges. Incoming is stored in a hash map whose
key is a pair < m, d1 > where m is a method and d1 is a data-
flow fact, representing the target node of a call flow edge. Its
value is the set of all predecessors of < mp, d1 > implemented
as a map, whose key is a predecessor node < c, d2 > and value
is a data-flow fact d0. The tuple < d0, d2, c > can uniquely
identify the path edge in proc(c) reaching < c, d2 >. EndSum
is stored in a similar fashion as Incoming.

A path edge object (of class PathEdge) is uniquely hashed
according to its source fact, target fact, and target location.
When propagating the path edge < sp, d1 > → < n, d2 >,
FlowDroid firstly creates object p of class PathEdge, then
the hash code of p is computed and looked up in the hash map.
If there already exists an entry with the same hash code, p is
skipped and will be reclaimed by JVM’s garbage collector.

238

1. void main() {

2. a = source();

3. o1 = new Object();

4. o2 = new Object();

5. o2.f = o1;

6. while() {

7. ...

8. o1.g = a;

9. ...

10. }

11. b = foo(o1.g);

12. ...

13. c = foo(o2.f.g);

14. sink(b);

15. sink(c);

16. }

0 a o1.g o2.f.g b c

17. void foo(p) {

18. …

19. r = p;

20. …

21. return r;

22. }

p r0

 Normal Flow(forward)

 Call Flow

 Call To Return Flow

 Return Flow

 Normal Flow(backward)

Fig. 1. FlowDroid — IFDS-based taint analysis

TABLE I
2,053 APPS GROUPED BY FLOWDROID’S MEMORY FOOTPRINT IN

ANALYZING EACH APP.

Total apps 2,053
Mem #Apps Mem #Apps
NA 825 20G-30G 1

<10G 1,047 30G-60G 5
10G-20G 13 >128G 162

III. STUDYING MEMORY USAGES

To understand the memory usages of IFDS solvers, we
conduct an extensive study by running the latest version of
FlowDroid (fa6e25d) [27] on the set of all 2,053 apps from F-
Droid [26], an open source Android app repository. The default
configuration of FlowDroid (access path length set to 5) is
used in analyzing each app. All experiments in this paper are
conducted on an Intel Xeon E7-4809v3 (2.0GHz) server with
128GB RAM and 2× 1TB hard-disk drive in Raid1, running
on Centos 7. The maximum heap size of JVM is set to 128GB
(with -Xmx).

Table I summarizes the results, where the 2,053 apps are
grouped by memory usages (reported by FlowDroid) of the
analysis. After analyzing an app, FlowDroid will report its
memory usage, which is the difference between the amount
of total memory and that of the currently available memory.
For each app, we run FlowDroid 5 times and report the average

of the 5 runs. In our experience, the amount of actual physical
memory required is always greater than that of the memory
usage reported by FlowDroid.

Among the 2,053 apps, 825 apps are not applicable since
they either do not require IFDS solvers (i.e., no tainted source
or sink) or cannot be processed by SOOT’s front-end, 1,047
apps are small and can be analyzed by FlowDroid with less
than 10GB of memory (Column 2). However, there are 19 apps
taking 10 to 128 GB of memory to analyze and FlowDroid
cannot analyze the other 162 apps under the memory budget
of 128GB.

We further investigate the 19 apps with memory require-
ments from 10GB to 128 GB. Table II presents the results.
For clarity of presentation, each app is given an abbreviated
name (Column 3) and we only use the abbreviated names
hereafter. The sizes of those apps (Column 5) range from 348
KB (CAT) to 28 MB (CGAB), and the memory requirements for
analyzing those apps (Column 4) range from 10,823MB (NMW)
to 44,905MB (CGT). The memory footprints and analysis
times (Column 8) are closely related to the number of path
edges computed. Column 6 and Column 7 present the number
of forward and backward path edges, respectively. The app
CGT has the largest number of total path edges, as well as a
long analysis time.

Let us have an in-depth look at how different data structures
(i.e., PathEdge, Incoming, EndSum) of the IFDS solver con-

239

TABLE II
STATISTICS OF FLOWDROID IN ANALYZING 19 APPS. ABBR IS THE ABBREVIATED NAME FOR EACH APP, MEM IS THE MEMORY USAGE REPORTED BY

FLOWDROID, #FPE AND #BPE ARE THE NUMBER OF FORWARD AND BACKWARD IFDS PATH EDGE COUNTS, RESPECTIVELY.

App Version Abbr Mem (MB) Size # FPE # BPE Time (s)
bus.chio.wishmaster 1.0.2 BCW 12,110 3.6M 31,855,030 25,279,290 424
com.alfray.timeriffic 1.09.05 CAT 12,441 348K 44,774,904 12,351,293 566

F-Droid 1.1 F-Droid 11,403 7.4M 28,978,612 18,939,414 731
hashengineering.groestlcoin.wallet 7.11.1 HGW 13,897 3.2M 40,763,887 25,447,605 584

nya.miku.wishmaster 1.5.0 NMW 10,823 3.5M 28,897,517 25,137,801 346
org.fdroid.fdroid 1.8-alpha0 OFF 11,392 7.6M 25,725,310 18,388,574 568

org.gateshipone.odyssey 1.1.18 OGO 11,729 2.6M 36,574,830 24,561,384 437
org.lumicall.android 1.13.1 OLA 12,869 5.6M 43,242,840 46,899,396 676

org.yaxim.androidclient 0.9.3 OYA 11,583 1.9M 31,134,795 19,731,055 356
com.github.axet.bookreader 1.12.14 CGAB 19,862 28M 132,406,852 60,651,941 1,655

com.kanedias.vanilla.metadata 1.0.4 CKVM 16,943 6.3M 50,253,185 16,545,672 699
org.secuso.privacyfriendlyweather 2.1.1 OSP 15,654 4.9M 52,555,173 18,637,146 478

org.smssecure.smssecure 0.16.12-unstable OSS 19,247 14M 67,720,886 62,934,793 2,580
fr.gouv.etalab.mastodon 2.28.1 FGEM 21,669 29M 36,838,257 133,277,513 3,518

com.genonbeta.TrebleShot 1.4.2 CGT 44,905 4.3M 163,539,220 62,170,524 3,212
com.github.axet.callrecorder 1.7.13 CGAC 39,451 5.6M 108,069,294 41,486,114 2,167

com.zeapo.pwdstore 1.3.3 CZP 39,467 4.4M 122,553,741 70,657,317 3,483
de.k3b.android.androFotoFinder 0.8.0.191021 DKAA 41,780 1.5M 95,003,209 88,434,821 3,739

org.kde.kdeconnect tp 1.13.5 OKKT 32,535 4.5M 38,697,933 25,518,466 811

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

PathEdge Incoming EndSum Other

Fig. 2. The memory usage of different data structures, PathEdge, Incoming,
and EndSum in the IFDS solver of FlowDroid in analyzing the apps in Table I.

tribute to the total memory usages. We estimate the memory
usage of each data structure as the increased available memory
after the data structure is freed (by firstly clearing the storage
map, then manually invoking system.gc() to reclaim ob-
jects with no reference). Hence, the memory usage of a data
structure is the memory usage of the storage map and those
objects only referred to by the map.

Figure 2 shows the memory distribution for each data struc-
ture of the IFDS solver. In this experiments, we free the 3 data
structures PathEdge, Incoming and EndSum in that order. Path
edge objects (of type PathEdge) are only referred to by the
storage map of PathEdge and they are reclaimed after clearing
the map. Data-flow fact objects (of type AccessPath) can
be referred to by any of the 3 data structures. Hence, freeing
each structure will result in some data-flow fact objects being
reclaimed. As shown in Figure 2, PathEdge accounts for the

majority of memory usages, consuming averagely 79.07% of
the total memory. Incoming and EndSum use 9.52% and 9.20%
of the total memory, respectively.

Observation: PathEdge accounts for the majority of
memory consumption in the IFDS solver of FlowDroid. The
number of path edges are in the order of hundreds of millions
for those apps in Table I, and can reach billions for larger
apps. It is not only memory consuming to store the large
set of path edges. New path edge objects are frequently
created and checked by the IFDS solver. Although hash map
lookup has theoretically O(1) time complexity, maps with
sizes of hundreds of millions may result in many collisions.
Furthermore, it can be time-consuming to frequently compute
the hash codes of billions of newly created path edge objects.

IV. REDUCING MEMORY FOOTPRINTS

In this section, we summarize our efforts in reducing the
memory footprints of existing IFDS solvers.

Figure 3 overviews our approach, a new taint analysis
tool equipped with a disk-assisted IFDS solver. The tool,
DiskDroid, employs two memory-saving strategies. Firstly,
instead of memorizing all path edges, DiskDroid selectively
memorize those edges which tend to be frequently looked up
via the Hot Edge Selector. The memory footprints are thus
reduced by recomputing the other non-hot path edges on the
fly, with some extra computation cost. Secondly, DiskDroid
swaps in-memory data to disk when memory usages reach a
predefined threshold. The Disk Scheduler implements a set of
schemes to efficiently swap data in and out of memory, by
considering the following concerns:

• Which data to be swapped out of memory?
• At what granularity to swap data?

240

APK Alias
Analysis

Taint
Analysis

IFDS
Solver Report

Return Alias

Request Alias

ICFG Leaks

DiskDisk

Hot Edge
Selector

Disk
Scheduler

Fig. 3. DiskDroid: taint analysis with disk-assisted IFDS solver.

87.0%

11.1%

1.5% 0.5%

1 (1,10) [10,100) [100,∞)

Fig. 4. Distribution of pass edge access number for CGAB.

Opportunities and Risks: The key here is to optimize
those infrequently accessed or easy-to-compute path edges so
that the penalty of recomputation or accessing disks can be
minimized. There are many rarely-accessed path edges, as
evident in Figure 4. For the benchmark CGAB, most of the path
edges (86.97%) are visited only once, and only less than 2%
of the path edges are visited more than 10 times. However, it is
difficult to predicate which path edges are frequently accessed
or not. Recomputing or swapping randomly picked path edges
may incur a high computational cost, or even result in the
algorithm running forever.

A. Hot Edge Selector

The Hot Edge Selector makes the classical trade-offs be-
tween memoization and recomputation. Algorithm 2 illustrates
how to apply this optimization to the traditional Tabulation
algorithm (Algorithm 1). The procedure prop (lines 11 - 13
in Algorithm 1) is replaced with a new implementation, where
non-hot path edges are not memoized (line 12.1). Those non-
hot path edges are always inserted into WorkList for further
propagation.

We apply the following heuristics to determine whether a
path edge p = < ∗, ∗ > → < n, d > is hot or not:

Algorithm 2: IFDS algorithm optimized by hot
edge selector.

Procedure Prop(e):
[12] if e is not a hot edge :

[12.1] Insert e into WorkList
[12.2] elif e /∈ PathEdge :
[12.3] Insert e into WorkList;Insert e into

PathEdge

1) n is a loop header. Without memorizing path edges
leading to loops, the analysis may propagate a path edge
within a loop forever and never terminates.

2) p is derived from an inter-procedural flow edge, i.e., n is
a function entry, or n is an exit node with d related to the
formal parameters of proc(n), or n is a return site with
d related to the actual parameters at the callsite. Inter-
procedural flows tend to incur a high re-computation cost.
For instance, recomputing a path edge at the function
entry may result in all other path edges in the callee
function being recomputed.

3) p is derived from a backward IFDS pass in FlowDroid.
FlowDroid start a backward pass to search for aliases
when storing a tainted value to object fields, and aliases
identified in the backward pass generate new path edges
which are then propagated forwardly. Those new path
edges are considered as hot edges to avoid repetitively
propagating aliased access paths, which are common in
Java programs.
Implementation: It is very efficient to query whether a

path edge is hot or not, by examining its target node. In Case
1 and 2, the query returns immediately. In case 3, whenever
a new path edge < ∗, ∗ > → < n, d > is generated by
a backward IFDS pass, we store the new edge < n, d >
in a hash map D, where d ∈ D[n]. Path edge < ∗, ∗ >
→ < n′, d′ > is regarded as a hot edge if d′ ∈ D[n′].
Compared to the original algorithm which frequently computes
hash codes and looks up PathEdge for newly generated path
edges (line 12 in Algorithm 1), hot edge queries are much
more efficient. As a result, the optimization may result in
significant performance speedups (e.g., 58.1% speedup for
CKVM as shown in Section V).

Theorem 1. The IFDS algorithm optimized by hot edge
selector is sound and can terminate.

Proof. Soundness: A path edge in the original algorithm is
processed at least once in the optimized algorithm. Processing
a path edge in both algorithms generates the same set of path
edges. As a result, the sets of hot path edges collected by both
algorithms are identical.

Termination: When all hot path edges are collected, since
path edges at loop/function entries are hot edges, the remaining
path edges in WorkList can only propagate along the forward
CFG edges. Hence, a path edge p cannot be generated by p′

if p′ is generated in propagating p. Eventually, the WorkList
is ∅ and the algorithm terminates.

241

B. Disk Scheduler

We aim to efficiently swap in-memory data to disk at
minimal cost. This can be achieved at two fronts: the first
is to store data no longer accessed in disk, and the second is
to group closely-accessed (i.e., data accessed together within
a small interval) data together such that data can be stored
to/loaded from disk in a batch. How to identify data with no
future accesses and how to discover closely-accessed data?
The disk scheduler investigates a variety of grouping and
swapping schemes.

1) Grouping: The two data structures EndSum and
Incoming are already grouped in the original implementation.
Path edges can be grouped according to their containing
methods, the source facts, or target facts, as listed below.
• Method. Path edges grouped by their containing function,

i.e., {< sm, ∗ >→< ∗, ∗ >}.
• Method&Source. Path edges grouped by source nodes,

i.e., {< sm, d > → < ∗, ∗ >}.
• Method&Target. Path edges grouped by their containing

functions together with the data-flow facts of target nodes,
i.e., {< sm, ∗ > → < ∗, d >}.

• Source. Path edges grouped by the data-flow facts of
source nodes, i.e., {< ∗, d > → < ∗, ∗ >}.

• Target. Path edges grouped by the data-flow facts of target
nodes, i.e., {< ∗, ∗ > → < ∗, d >}.

In our experience, the grouping strategy Source has the
best overall performance. The strategy Method groups too
many path edges together. As a result, it takes each disk
access a long time to load the large group of path edges into
memory, leading to frequent time outs (in 3 hours). On the
other hand, there are only few path edges in Method&Source
and Method&Target groups, resulting in frequent disk accesses
and poor performance.

2) Data Swapping: In Algorithm 1, we refer to path edges
in WorkList as active path edges since they will be further
processed. It is necessary to keep active path edges in memory.
As shown in Figure 4, most path edges are accessed only once.
Hence, it is plausible to swap all inactive edges in PathEdge
to disk, since those path edges have already been processed
and are unlikely to be accessed again.

DiskDroid swaps path edges in groups, and the notation
g(p) denotes the group of path edge p. Memorizing p in
PathEdge implies that the whole group g(p) are also in
memory. Sometimes it is not sufficient to keep all active groups
in memory. Hence, we enforce a swap ratio which is the
percentage of in-memory groups to be swapped out. After
swapping all inactive groups, we select to swap out g(p) where
p is at the end of WorkList, until reaching the swap ratio
(50% by default). Since WorkList is an ordered queue, path
edge at the end of the queue are processed last. Thus, its group
is swapped out first.

Implementation: To swap path edge in groups, we reor-
ganize the hash map PathEdge into a two-level map. The
key of the first-level map is for grouping path edges, and the
value is the group of edges, implemented as a hash map in the

original form. A path edge group is stored to disk in a separate
file, with its name uniquely identified by the group key. Further
more, newly created path edge groups (line 12.3, Algorithm 2)
are memoized in NewPathEdge, in separation from groups
loaded from disk (OldPathEdge). Such partition enables an
efficient way to write path edge groups to disk: groups in
OldPathEdge are discarded and a group in NewPathEdge
is appended to the file uniquely identified by its key.

A path edge is stored by 3 integer values, one for the
source fact, one for the target fact, and one for the target
location. We maintain a hash map, together with an array,
to get the integer number of a data-flow fact and to re-
store the data-flow fact from an integer number efficiently.
We use the JDK API BufferedDataInputStream and
BufferedOutputStream for reading/writing files.

Disk swapping is triggered when memory usages reach 90%
of the given memory budget. To swap out inactive groups,
we first traverse WorkList to get all active group keys.
Then, the four structures NewPathEdge, OldPathEdge,
Incoming, and EndSum are examined. All inactive groups
(including path edges groups, and grouped data in Incoming
and EndSum) are swapped out. When the swap ratio is
reached, we invoke system.gc() to reclaim memory of
objects with no reference.

V. EVALUATION

To demonstrate the effectiveness of our disk-assisted IFDS
algorithm, we compare DiskDroid against FlowDroid in solv-
ing taint analysis problems. The two tools differ in their
underlying IFDS solvers only. By Theorem 1, the disk-assisted
solver in DiskDroid computes the same data-flow results as the
traditional IFDS solver in FlowDroid, and we have validated
the correctness of DiskDroid with extensive benchmarking
(using DroidBench and open-source Apps). Hence, we will
therefore focus on evaluating the performance differences
between the two tools.

We apply both tools to the set of 181 apps in F-Droid,
with 19 apps requiring 10GB to 128 GB of RAM, and 162
apps requiring more than 128GB of RAM for FlowDroid. In
the experiments, we limit the memory usage of DiskDroid
to 10GB and that of FlowDroid to 128GB (with -Xmx). We
run each tool on an app 5 times and report the average data
of the 5 runs. Our evaluation answers the following research
questions:
RQ1. How is the runtime performance of DiskDroid com-
pared to FlowDroid?
RQ2. Is hot edge optimization effective?
RQ3. Are the grouping and scheduling strategies effective?

A. RQ1. Runtime Performance

Figure 5 compares the run time performance of DiskDroid
against FlowDroid for the 19 apps in Table I. Those apps can
be analyzed by FlowDroid under the given memory budget of
128 GB. Surprisingly, DiskDroid outperforms FlowDroid by
averagely 8.6%, despite given a much smaller memory budget
(10GB). The performance differences of the two tools vary

242

-60.0%

-40.0%

-20.0%

0.0%

20.0%

40.0%

60.0%

B
C

W

C
A

T

F-
D

ro
id

H
G

W

N
M

W

O
FF

O
G

O

O
LA

O
YA

C
G

A
B

C
K

V
M

FG
EM O
SP

O
SS

C
G

T

C
G

A
C

C
ZP

D
K

A
A

O
K

K
T

P
er

fo
rm

an
ce

 n
o

rm
al

iz
ed

to

 F
lo

w
d

ro
id

Threshold 90%

Fig. 5. Performance differences of DiskDroid against FlowDroid. The smaller,
the better. Disk swapping is triggered at a usage ration of 90%.

TABLE III
NUMBER OF DISK ACCESSES, NUMBER OF PASS EDGE GROUPS AND

AVERAGE PATH EDGE GROUP SIZE. #WT AND #RT ARE THE NUMBER OF
WRITE AND READ ACCESSES TO DISK, RESPECTIVELY. #PG IS THE

NUMBER OF PATH EDGE GROUPS WRITTEN TO DISK AND |PG| IS THE
AVERAGE GROUP SIZE.

WT # RT # PG |PG|
CAT 2 17,619 194,568 21

F-Droid 2 18,223 492,816 13
HGW 4 33,499 227,523 38
CGAB 2 16,320 120,371 43
CGT 6 51,166 327,411 46
CGAC 4 59,057 321,553 29

widely across the 19 benchmarks, from a large slowdown
of 54.5% (OGO) to a significant speedup of 58.1% (CVKM).
This is due to the fact that memory-oriented optimizations of
DiskDroid are double-edged-swords for runtime performance.
For instance, in hot edge optimization, the benefits of skipping
hash code computation and hash map lookups for non-hot
edges can outweigh the cost in recomputing those edges.
Similarly, the cost of swapping data in and out of memory
can be offset by the benefits of more efficient hash map
lookups after reorganizing the hash map PathEdge. Among
the 19 apps, there are 13 apps (BCW, CAT, NMW, OFF, OLA,
OYA, CGAB, CKVM, FGEM, OSS, CGT, CGAC, CZP) with
performance improvements (from 7.4% to 58.1%), 5 apps
(F-Droid, HGW, OGO, DKAA, OKKT) with slowdowns
(from 9.0% to 54.5%), and 1 app (OSP) with insignificant
performance changes.

Table III shows the number of disk accesses and the average
group size for 6 apps. Column 2 gives the number of disk-
swapping (triggered at memory usage threshold 90%), which
is small. There are more frequent read accesses (Column 3):
a path edge group is loaded from disk whenever a query fails
to locate a path edge in the memoized hash map. However,
the ratio is small compared to the number of path edges
(Column 7 and Column 8 in Table I). For CGAC with the
most number of read accesses (59,057), the ratio is 0.04%,
suggesting that most path edge queries are satisfied by look
up the memoized hash map. Column 4 shows the number of

-80.0%

-60.0%

-40.0%

-20.0%

0.0%

20.0%

40.0%

60.0%

B
C

W

C
A

T

F-
D

ro
id

H
G

W

N
M

W

O
FF

O
G

O

O
LA

O
Y

A

C
G

A
B

C
K

V
M

FG
EM O
SP

O
SS

C
G

T

C
G

A
C

C
ZP

D
K

A
A

O
K

K
T

P
er

fo
rm

an
ce

 a
n

d
 m

em
o

ry
 r

at
io

n

o
rm

al
iz

ed
 t

o
 F

lo
w

d
ro

id

Time Memory

Fig. 6. The differences of run time performance and memory usages of
applying hot edge optimization to FlowDroid. The smaller, the better. On
average, the optimization saves memory by 30.8%.

path edge groups swapped to disk. Compared to Column 3,
the number is an order of magnitude larger. This confirms the
finding in previous study: most path edges are accessed only
once and a majority of path edge groups are stored in disk
and never loaded.

We run DiskDroid on the other 162 apps demanding more
than 128GB of RAM for FlowDroid. Among the 162 apps,
DiskDroid can process 21 of them in 3 hours and the other
141 apps timeout in 3 hours.

B. RQ2. Hot Edge Optimization

We apply hot edge optimization to FlowDroid and report
the differences of run time performance and memory usages
for the same set of 19 apps. The memory usage is limited
to 128GB in both configurations. Figure 6 summarizes the
results. The optimization is very effective for the 9 apps CKVM,
CGT, CGAC, BCW, OFF, CGAB, HGW, OGO, and OSP, with
memory usage reduced from 31.6% (OSP) to 75.8% (CKVM).
However, the memory usage improvements are insignificant
for the 6 benchmarks CZP, OKKT, OSS, FGEM, CAT, and
DKAA, with a memory usage reduction of less than 16%.

Hot edge optimization saves memory at the cost of recom-
puting non-hot path edges, resulting in an increased number of
computations. Table IV compares the number of computations
of FlowDroid (Column 2) to that when hot edge optimization
is applied (Column 3). The number of computations increases
significantly, from 1.08X (CKVM) to 3.33X (CZP). For CKVM,
we observe a large performance improvement of 58.1%, sug-
gesting that this optimization has significant positive impacts
to run time performance, by reducing the number of hash code
computation and hash map lookups. The app CZP has the
largest computational increase of 3.33X. However, we observe
a speed up of 15.9%. This is because non-hot edges can be
computed very efficiently and the extra computational cost is
outweighed by the positive impact of the optimization.

C. RQ3. Grouping and Swapping Strategies

Figure 7 compares the run time performance of different
grouping schemes. After hot edge optimization, 7 apps (BCW,
NMW, OFF, OLA, OYA, OSP, and CKVM) can be analyzed in 10

243

TABLE IV
NUMBER OF COMPUTED PATH EDGES. #FLOWDROID IS THE ORIGINAL

NUMBER OF FLOWDROID, AND #OPTIMIZED IS THE NUMBER WITH HOT
EDGE OPTIMIZATION.

#FlowDroid #Optimized Ratio
BCW 32,447,505 44,222,211 1.36
CAT 44,069,465 77,675,474 1.76

F-Droid 29,206,743 38,638,259 1.32
HGW 25,926,773 83,714,388 3.23
NMW 30,813,008 40,804,585 1.32
OFF 25,710,812 34,552,561 1.34
OGO 39,295,629 80,583,394 2.05
OLA 41,666,549 57,461,639 1.38
OYA 29,122,085 32,275,022 1.11
CGAB 132,176,249 275,527,399 2.08
CKVM 38,541,452 41,518,262 1.08
FGEM 37,480,947 85,214,757 2.27
OSP 52,378,247 60,983,905 1.16
OSS 67,487,451 158,045,173 2.34
CGT 160,534,182 517,692,586 3.22
CGAC 103315965 177215471 1.72
CZP 140323650 466792064 3.33
DKAA 93279912 173273865 1.86
OKKT 64216399 131378047 2.05

-60.0%

-40.0%

-20.0%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

P
er

fo
rm

an
ce

 n
o

rm
al

iz
ed

to
 F

lo
w

d
ro

id

Method&Source Method&Target Source Target

Fig. 7. Performance differences with different grouping schemes. The smaller
the better.

GB of RAM. Hence, we report the run times for the other 12
apps in Table I. Among all the grouping schemes, the Method
scheme performs worst and it frequently timeouts in 3 hours.
Figure 7 reports the performance for the other 4 grouping
schemes. Since disk scheduler swaps in-memory data to disk
at the same threshold for all grouping schemes, the differences
of memory usages are negligible thus not reported. Overall,
the Source scheme exhibits the best run time performance and
it is used as the default grouping scheme.

Figure 8 compares the run time performance of different
swapping policies with an enforced swap ratio. Default is the
policy in DiskDroid and Random is the policy to randomly
swap out path edge groups. The policy Default 0% swaps
out all inactive groups and keep all active groups in memory.
The random policy performs poorly, with a 112% slowdown
over FlowDroid for CGT and it timeouts (in 3 hours) for the
five apps FGEM, OSS, CZP, DKAA and OKKT. The Default
0% policy also fails to analyze these five apps and throws
out out-of-memory or gc exceptions. This is because without

-60.0%

-40.0%

-20.0%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

P
er

fo
rm

an
ce

 n
o

rm
al

iz
ed

to
 F

lo
w

d
ro

id

Default 50% Default 70% Default 0% Random 50%

112%

❌❌ ❌ ❌❌ ❌ ❌ ❌ ❌❌

Fig. 8. Performance differences using different swapping policies. Default
50%, Default 70% and Default 0% are the policy in DiskDroid with a enforced
swap ratio of 50%, 70%, and 0%, respectively. Random 50% randomly swap
out groups with a ratio of 50%.

enforcing a swap ratio, the memory usages easily exceed
the threshold, leading to frequent disk swapping and gc
operations. Comparing Default 50% to Default 70%, the run
time differences are insignificant when a different swapping
ratio (50% vs 70%) is enforced.

Discussion: The memory-oriented optimizations in
DiskDroid are effective in terms of reducing memory foot-
prints, enabling the tool to analyze large apps (requiring more
than 128 GB of RAM for FlowDroid) with a small memory
budget of 10GB of RAM. Those optimizations have both posi-
tive and negative impacts on run time performance, resulting in
a wide range of performance differences, from a slowdown of
54.5% (OGO), to a speedup of 58.1% (CKVM), with an overall
performance improvement of 8.6%. The positive impacts of
those optimizations suggest new opportunities in improving
analysis efficiency.

VI. RELATED WORK

The IFDS/IDE analysis framework has been applied in
a wide range of different applications, including software
testing, security analysis, and program verification. Reps et
al. [1] initially presented an IFDS analysis framework to solve
the inter-procedural, finite, distribute, subset problem. The
framework is then generalized in [28] to solve the more general
inter-procedural distribute environment problem (IDE), where
the data-flow facts are represented by an environment (i.e.,
a mapping from symbolic to values). Naeem et al. [19]
made a few practical extensions to the original algorithm,
which is now adopted in popular analysis and compilation
frameworks including WALA [2], SOOT [3], and LLVM [4].
Many optimization techniques have been applied to the IFDS
algorithm. WALA [2] provides a memory-efficient bit-vector-
based solution, Bodden [29] implemented a multi-threaded
IFDS/IDE solver in SOOT, and Schubert et al. [30] developed
an extendable IFDS/IDE solver for C/C++ programs in LLVM.
Dongjie et al. [10] proposed an effective optimization to
the IFDS/IDE solver by propagating data-flow facts sparsely,
which can drastically improve performance and memory con-

244

sumption. The disk-assisted approach in this paper can be
applied together with those optimization techniques, to further
improve memory scalability.

Graspan [21] presents a disk-based approach which lever-
ages graph computing engines [23], [25], [24], [31] in the big
data domain for classical pointer and data-flow analyses. The
idea is to partition a large graph into small sub-graphs which
can be processed in memory. Following this idea, BigSpa [22]
performs static analyses in a distributed manner and Grap-
ple [32] applies the approach for path-sensitive analyses. The
disk-assisted approach in this paper differs from the above in
that we extend existing in-memory analysis algorithms with
efficient disk swapping schemes.

Taint analysis aims to detect information flow violations
and is implemented in many commercial and open-source
security vetting tools. Among the many taint analysis tools for
Android [33], [34], [35], [36], [11], [9], FlowDroid remains
to be a state-of-the-art taint analysis tool [37]. This paper
introduces a new tool, DiskDroid, which extends FlowDroid
with a disk-assisted solver. With this extension, apps requiring
up to 128GB of RAM can be analyzed within a memory
budget of 10GB, making the tool deployable to normal desktop
environments.

VII. CONCLUSION

In this paper, we present a disk-assisted approach to im-
prove memory scalability of existing IFDS algorithms and
develop DiskDroid, a new taint analysis tool based on disk-
assisted IFDS solver. With two memory-oriented optimiza-
tions, DiskDroid can analyze apps requiring up to 128GB
of memory for FlowDroid (a state-of-the-art IFDS-based taint
analysis tool) under the memory budget of 10GB, with an over-
all performance improvement of 8.6%. DiskDroid is available
at https://github.com/HaofLi/DiskDroid.

In the future, we aim to study disk-assisted approaches to
other in-memory analysis algorithms, such as context-sensitive
pointer analyses, and symbolic analyses.

ACKNOWLEDGMENT

This work is supported by National Key R&D Program of
China (No. 2016YFB1000201), the Foundation for Innovative
Research Groups (61521092), and the National Natural Sci-
ence Foundation of China (61802368, 61872043).

APPENDIX A
ARTIFACT APPENDIX

A. Abstract

The artifacts include executables and datasets to conduct
all the experiments in the paper titled Scaling Up the IFDS
Algorithm with Efficient Disk-assisted Computing. We also
provide scripts to help reproduce each experiment in the paper.

B. Artifact Check-List (Meta-Information)

• Algorithm: Two optimization techniques to the classical IFDS
algorithm: hot edge optimization and disk swapping optimiza-
tion.

• Program: Flow-Droid, the popular taint analysis tool, and
DiskDroid, a taint analysis tool with our optimized IFDS solver,
as well as 18 Android Apps in our evaluation (Figure 5-8, Table
4), are included in the artifacts.

• Binary: Jar files of FlowDroid and DiskDroid.
• Data set: 18 Android Apps downloaded from F-Droid in our

evaluation.
• Run-time environment: CentOS 7 with JDK8 and Python3

installed.
• Hardware: 128GB RAM And >128GB disk space.
• Execution: We provide scripts to run experiments for all

benchmarks, as well as scripts to run on a single benchmark.
• Metrics: Analysis times and memory usages for FlowDroid and

DiskDroid in analyzing each benchmark.
• Output: All experimental results in our paper.
• How much disk space required (approximately)?: At least

138GB of disk space, including 10GB for out tool, data-sets
and result files, as well as 128GB for temporary files.

• How much time is needed to prepare workflow (approxi-
mately)?: A few minutes to install JDK8, python3, and a few
minutes to download our artifacts.

• How much time is needed to complete experiments (approx-
imately)?: We provide scripts to run all benchmarks, as well
as scripts to run a single benchmark. It takes about 15 days to
get results of all benchmarks, and takes from a few hours to 2
days to get results for a single benchmark.

• Publicly available?: The executable jar file is publicly avail-
able.

• Code licenses (if publicly available)?: GPL2.0
• Data licenses (if publicly available)?: GPL2.0

C. Description

1) How Delivered: We have packaged all the datasets, pre-built
executables, and scripts into DiskDroid-artifacts.tar.gz, which can be
downloaded at
https://doi.org/10.6084/m9.figshare.13246316.

2) Hardware Dependencies: The machine should be equipped
with at least 128GB RAM and at least 138GB hard-disk.

3) Software Dependencies: It should run on any linux systems,
but we recommond CentOS 7.

D. Installation

Before evaluation, JDK8 and Python3 should be installed. We
evaluate our tool on CentOS 7, so we provide the installation steps
for CentOS 7 below. The following commands(A.4.1, A.4.2) are
executed as root user.

1) Install JDK8:

• yum install -y java-1.8.0-openjdk java-1.8.0-openjdk-
devel

2) Install Python3:

• yum install python36 -y
• pip3 install numpy prettytable

245

https://github.com/HaofLi/DiskDroid
https://doi.org/10.6084/m9.figshare.13246316

E. Experiment Workflow
All the datasets, pre-built executables, scripts are packaged in

DiskDroid-artifacts.tar.gz at
https://doi.org/10.6084/m9.figshare.13246316.

• tar -zxvf DiskDroid-artifacts.tar.gz
• cd diskDroid

1) Run All Benchmarks: There are 18 apps in our benchmarks,
you can get all experimental results(i.e., data for all figures and tables
in our paper) by running the following command.

• python3 bin/run.py -t benchmarks/ -k ALL

Note that it takes 15 days on our server to finish all experiments.
The command will print all experimental data to console.

The Following command can run each experiment and print out
the results separately.

• python3 bin/run.py -t benchmarks/ -k $

$ can be the following items.
• flowdroid: Run FlowDroid only, and print out the memory

usages, analysis times and number of PathEdges for FlowDroid
(Table 2).

• memoryUsage: Run FlowDroid only, and summarizes the mem-
ory usages of different data structures (Figure 2).

• pathedgeAccessNum: Run FlowDroid on CGAB, and report
the distribution of pass edge access number (Figure 4).

• sourceGroup: Run DiskDroid with default configuration, i.e.,
group by source (Figure 5, Figure 7, Figure 8), and report the
analysis times.

• onlyHotEdge: Run DiskDroid with only hot edge optimization
enabled (Figure 6, Table 4), and report the analysis times and
memory usages.

• methodSourceGroup: Run DiskDroid with the
Method&Source grouping schemes (Figure 7), and report
the analysis times.

• methodTargetGroup: Run DiskDroid with the Method&Target
grouping schemes (Figure 7), and report the analysis times.

• targetGroup: Run DiskDroid with the target grouping schemes
(Figure 7), and report the analysis times.

• Random 50: Run DiskDroid with the random swapping
scheme and an enforced swap ratio of 50% (Figure 8), and
report the analysis times.

• Default 70: Run DiskDroid with the default swapping scheme
and an enforced swap ratio of 70% (Figure 8), and report the
analysis times.

• Default 0: Run DiskDroid with the default swapping scheme
and an enforced swap ratio of 0% (Figure 8), and report the
analysis times.

For example, if you want to get Table 2, you can run:

• python3 bin/run.py -t benchmarks/ -k flowdroid

We remind again that it will take about 3 days to finish one
experiment for all the 18 Apps, and can take 15 days to finish all
experiments for all the 18 Apps. We also provide a script which
runs on a single benchmark, as shown in section A-E2.

2) Run One Benchmark: There are two command line op-
tions: -t and -k. The -k option is same as the items which we
describe in section A-E1, and the -t option is used to specify
the target benchmark. For example, to get all experimental results

for com.alfray.timeriffic_10905.apk, we can run below
command.

• python3 bin/run-single.py -t
benchmarks/group1/com.alfray.timeriffic 10905.apk -k
ALL

F. Evaluation and Expected Result
The results are printed to the console. The results are consistently

indexed with the paper, please check our discussions in the paper for
more details. For figures, we only print out the corresponding data
instead of generating graphs.

G. Notes
Because Flowdroid is unstable every run, We run each tool on an

app 5 times and report the average data of the 5 runs. So, if evaluating
many times, the time and memory may be different.

REFERENCES

[1] T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural
dataflow analysis via graph reachability,” in Proceedings of the 22nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’95. New York, NY, USA: Association
for Computing Machinery, 1995, p. 49–61. [Online]. Available:
https://doi.org/10.1145/199448.199462

[2] IBM. Wala: T.j. watson libraries for analysis. http://wala.sourceforge.net.
Accessed: 2020.

[3] P. Lam, E. Bodden, O. Lhoták, and L. Hendren, “The Soot framework
for Java program analysis: a retrospective,” in Cetus Users and
Compiler Infrastructure Workshop (CETUS 2011), Oct. 2011. [Online].
Available: http://www.bodden.de/pubs/lblh11soot.pdf

[4] Llvm framework. https://llvm.org/. Accessed: 2020.
[5] J. Späth, K. Ali, and E. Bodden, “Ideal: Efficient and precise alias-aware

dataflow analysis,” Proc. ACM Program. Lang., vol. 1, no. OOPSLA,
Oct. 2017. [Online]. Available: https://doi.org/10.1145/3133923

[6] J. Späth, L. Nguyen Quang Do, K. Ali, and E. Bodden, “Boomerang:
Demand-driven flow-and context-sensitive pointer analysis for java,” in
30th European Conference on Object-Oriented Programming (ECOOP
2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[7] L. Li, C. Cifuentes, and N. Keynes, “Precise and scalable context-
sensitive pointer analysis via value flow graph,” ser. ISMM ’13. New
York, NY, USA: Association for Computing Machinery, 2013, p.
85–96. [Online]. Available: https://doi.org/10.1145/2491894.2466483

[8] ——, “Boosting the performance of flow-sensitive points-to analysis
using value flow,” in Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering, ser. ESEC/FSE ’11. New York, NY, USA:
Association for Computing Machinery, 2011, p. 343–353. [Online].
Available: https://doi.org/10.1145/2025113.2025160

[9] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” in Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’14.
New York, NY, USA: Association for Computing Machinery, 2014, p.
259–269. [Online]. Available: https://doi.org/10.1145/2594291.2594299

[10] D. He, H. Li, L. Wang, H. Meng, H. Zheng, J. Liu, S. Hu,
L. Li, and J. Xue, “Performance-boosting sparsification of the ifds
algorithm with applications to taint analysis,” in Proceedings of the
34th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’19. IEEE Press, 2019, p. 267–279. [Online].
Available: https://doi.org/10.1109/ASE.2019.00034

[11] F. Wei, S. Roy, X. Ou, and Robby, “Amandroid: A precise and general
inter-component data flow analysis framework for security vetting of
android apps,” in Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’14. New York,
NY, USA: Association for Computing Machinery, 2014, p. 1329–1341.
[Online]. Available: https://doi.org/10.1145/2660267.2660357

246

https://doi.org/10.6084/m9.figshare.13246316
https://doi.org/10.1145/199448.199462
http://wala.sourceforge.net
http://www.bodden.de/pubs/lblh11soot.pdf
https://llvm.org/
https://doi.org/10.1145/3133923
https://doi.org/10.1145/2491894.2466483
https://doi.org/10.1145/2025113.2025160
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1109/ASE.2019.00034
https://doi.org/10.1145/2660267.2660357

[12] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman,
“Taj: Effective taint analysis of web applications,” SIGPLAN Not.,
vol. 44, no. 6, p. 87–97, Jun. 2009. [Online]. Available: https:
//doi.org/10.1145/1543135.1542486

[13] T. Tan, Y. Li, Y. Zhang, and J. Xue, “Program Tailoring: Slicing by
Sequential Criteria (Artifact),” Dagstuhl Artifacts Series, vol. 2, no. 1,
pp. 8:1–8:3, 2016. [Online]. Available: http://drops.dagstuhl.de/opus/
volltexte/2016/6129

[14] R. Manevich, M. Sridharan, S. Adams, M. Das, and Z. Yang, “Pse:
explaining program failures via postmortem static analysis,” in Pro-
ceedings of the 12th ACM SIGSOFT twelfth international symposium
on Foundations of software engineering, 2004, pp. 63–72.

[15] S. Hallem, B. Chelf, Y. Xie, and D. Engler, “A system and language
for building system-specific, static analyses,” in Proceedings of the
ACM SIGPLAN 2002 Conference on Programming language design and
implementation, 2002, pp. 69–82.

[16] G. Wassermann and Z. Su, “Static detection of cross-site scripting
vulnerabilities,” in 2008 ACM/IEEE 30th International Conference on
Software Engineering. IEEE, 2008, pp. 171–180.

[17] D. He, L. Li, L. Wang, H. Zheng, G. Li, and J. Xue, “Understanding
and detecting evolution-induced compatibility issues in android apps,”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ser. ASE 2018. New York, NY,
USA: Association for Computing Machinery, 2018, p. 167–177.
[Online]. Available: https://doi.org/10.1145/3238147.3238185

[18] A. Gotsman, J. Berdine, and B. Cook, “Interprocedural shape analy-
sis with separated heap abstractions,” in International Static Analysis
Symposium. Springer, 2006, pp. 240–260.

[19] N. A. Naeem, O. Lhoták, and J. Rodriguez, “Practical extensions to
the ifds algorithm,” in Compiler Construction, R. Gupta, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 124–144.

[20] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rasthofer,
and E. Bodden, “Mining apps for abnormal usage of sensitive data,”
in Proceedings of the 37th International Conference on Software Engi-
neering - Volume 1, ser. ICSE ’15. IEEE Press, 2015, p. 426–436.

[21] K. Wang, A. Hussain, Z. Zuo, G. Xu, and A. Amiri Sani, “Graspan:
A single-machine disk-based graph system for interprocedural static
analyses of large-scale systems code,” in Proceedings of the
Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
389–404. [Online]. Available: https://doi.org/10.1145/3037697.3037744

[22] Z. Zuo, R. Gu, X. Jiang, Z. Wang, Y. Huang, L. Wang, and X. Li,
“Bigspa: An efficient interprocedural static analysis engine in the
cloud,” in 2019 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2019, pp. 771–780.

[23] A. Kyrola, G. Blelloch, and C. Guestrin, “Graphchi: Large-scale graph
computation on just a pc,” in Proceedings of the 10th USENIX Confer-
ence on Operating Systems Design and Implementation, ser. OSDI’12.
USA: USENIX Association, 2012, p. 31–46.

[24] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and
I. Stoica, “Graphx: Graph processing in a distributed dataflow frame-
work,” in Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’14. USA: USENIX
Association, 2014, p. 599–613.

[25] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-stream: Edge-
centric graph processing using streaming partitions,” in Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, ser. SOSP ’13. New York, NY, USA: Association
for Computing Machinery, 2013, p. 472–488. [Online]. Available:
https://doi.org/10.1145/2517349.2522740

[26] F-droid. https://f-droid.org/. Accessed: 2019.12.
[27] Flowdroid-github. https://github.com/secure-software-engineering/

FlowDroid. Accessed: 2019.
[28] M. Sagiv, T. Reps, and S. Horwitz, “Precise interprocedural dataflow

analysis with applications to constant propagation,” Theoretical Com-
puter Science, vol. 167, no. 1, pp. 131 – 170, 1996. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0304397596000722

[29] E. Bodden, “Inter-procedural data-flow analysis with ifds/ide and soot,”
in Proceedings of the ACM SIGPLAN International Workshop on State
of the Art in Java Program Analysis, ser. SOAP ’12. New York, NY,
USA: Association for Computing Machinery, 2012, p. 3–8. [Online].
Available: https://doi.org/10.1145/2259051.2259052

[30] P. D. Schubert, B. Hermann, and E. Bodden, “Phasar: An inter-
procedural static analysis framework for c/c++,” in Tools and Algorithms
for the Construction and Analysis of Systems, T. Vojnar and L. Zhang,
Eds. Cham: Springer International Publishing, 2019, pp. 393–410.

[31] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Pow-
ergraph: Distributed graph-parallel computation on natural graphs,” in
Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation, ser. OSDI’12. USA: USENIX Association,
2012, p. 17–30.

[32] Z. Zuo, J. Thorpe, Y. Wang, Q. Pan, S. Lu, K. Wang, G. H. Xu,
L. Wang, and X. Li, “Grapple: A graph system for static finite-state
property checking of large-scale systems code,” in Proceedings of the
Fourteenth EuroSys Conference 2019, ser. EuroSys ’19. New York,
NY, USA: Association for Computing Machinery, 2019. [Online].
Available: https://doi.org/10.1145/3302424.3303972

[33] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and M. C.
Rinard, “Information flow analysis of android applications in droidsafe.”
in NDSS, vol. 15, no. 201, 2015, p. 110.

[34] H. Cai and J. Jenkins, “Leveraging historical versions of android apps
for efficient and precise taint analysis,” in Proceedings of the 15th
International Conference on Mining Software Repositories, 2018, pp.
265–269.

[35] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “Iccta: Detecting
inter-component privacy leaks in android apps,” in 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, vol. 1, 2015,
pp. 280–291.

[36] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, “Android taint
flow analysis for app sets,” in Proceedings of the 3rd ACM SIGPLAN
International Workshop on the State of the Art in Java Program Analysis,
2014, pp. 1–6.

[37] F. Pauck, E. Bodden, and H. Wehrheim, “Do android taint analysis
tools keep their promises?” in Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2018, pp. 331–341.

247

https://doi.org/10.1145/1543135.1542486
https://doi.org/10.1145/1543135.1542486
http://drops.dagstuhl.de/opus/volltexte/2016/6129
http://drops.dagstuhl.de/opus/volltexte/2016/6129
https://doi.org/10.1145/3238147.3238185
https://doi.org/10.1145/3037697.3037744
https://doi.org/10.1145/2517349.2522740
https://f-droid.org/
https://github.com/secure-software-engineering/FlowDroid
https://github.com/secure-software-engineering/FlowDroid
http://www.sciencedirect.com/science/article/pii/0304397596000722
https://doi.org/10.1145/2259051.2259052
https://doi.org/10.1145/3302424.3303972

	Introduction
	Background
	The Tabulation Algorithm
	FlowDroid

	Studying Memory Usages
	Reducing Memory Footprints
	Hot Edge Selector
	Disk Scheduler
	Grouping
	Data Swapping

	Evaluation
	RQ1. Runtime Performance
	RQ2. Hot Edge Optimization
	RQ3. Grouping and Swapping Strategies

	Related Work
	Conclusion
	Appendix A: Artifact Appendix
	Abstract
	Artifact Check-List (Meta-Information)
	Description
	How Delivered
	Hardware Dependencies
	Software Dependencies

	Installation
	Install JDK8
	Install Python3

	Experiment Workflow
	Run All Benchmarks
	Run One Benchmark

	Evaluation and Expected Result
	Notes

	References

