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Abstract

PHP-based web applications constitute a significant portion of
the Web infrastructure and are frequently targeted by attackers
exploiting taint-style vulnerabilities. While static analysis has
emerged as a preferred approach for detecting these vulner-
abilities, two major challenges persist: accurately inferring
dynamic values from PHP’s dynamic features, and efficiently
detecting taint vulnerabilities in large-scale applications. This
paper presents ZIPPER, a novel static analysis framework
that addresses these challenges through two key innovations.
First, we introduce a context-sensitive, flow-sensitive value-
set algorithm that precisely infers dynamic values by leverag-
ing input validation patterns and framework API characteris-
tics. Second, we implement an efficient, on-demand approach
to taint analysis that incorporates object-sensitive and array
index-sensitive analyses while maintaining efficiency through
sparse data dependency graphs. Evaluation on 429 known
taint-style vulnerabilities demonstrates ZIPPER’s effective-
ness with the highest precision of 68.34% and an impressive
recall of 98.14%, outperforming existing approaches. Further-
more, application of ZIPPER to 100 popular PHP applications
led to the discovery of 11 previously unknown vulnerabilities,
resulting in 6 CVE assignments.

1 Introduction

PHP-based web applications, including popular platforms
such as WordPress (content management system) [6] and
Wikipedia (online encyclopedia) [1], form a significant part
of the Web infrastructure [48]. Their widespread adoption
and the sensitive data they host make them prime targets for
attackers, increasing the risk of security breaches. These secu-
rity risks stem from a variety of vulnerabilities, among which
taint-style vulnerabilities are particularly concerning. Such
vulnerabilities are not only highly prevalent in PHP-based
websites but are also frequently exploited by attackers [30].

BYeting Li is the corresponding author.

Taint-style vulnerabilities occur when user-supplied data
reaches sensitive functions without sufficient validation, po-
tentially leading to various attack vectors such as command
injection [2], SQL injection [4], and Cross-Site Scripting
(XSS) [3]. These vulnerabilities can have severe conse-
quences, including the exposure of sensitive data and, in more
critical cases, system compromise.

To address these security challenges, researchers have
proposed numerous detection methods, broadly categorized
into dynamic and static approaches. Dynamic approaches
[19–21,35,47,49] involve injecting attack payloads into HTTP
requests and analyzing responses or application states to iden-
tify vulnerabilities, such as detecting XSS through payload
reflection. While effective in certain scenarios, dynamic anal-
ysis approaches face significant limitations, including manual
configuration requirements, incomplete code coverage, poten-
tially resulting in false negatives.

In contrast, static analysis approaches [9, 12, 16, 18, 24, 30,
51,53] offer comprehensive code coverage and automation ca-
pabilities, facilitating seamless integration into development
workflows. Consequently, static analysis has emerged as a
widely adopted and effective approach for detecting taint-style
vulnerabilities in PHP applications.

1.1 Challenges

The effectiveness of static analysis in detecting taint-type
vulnerabilities in PHP applications depends on constructing
precise and complete call graphs and data dependency graphs.
However, PHP’s dynamic features make this objective par-
ticularly challenging. Furthermore, the large-scale nature of
modern PHP applications poses significant efficiency chal-
lenges to vulnerability detection.Here, we introduce these two
main challenges:

Challenge 1: How to statically infer dynamic values aris-
ing from PHP’s dynamic features? PHP dynamic features
such as dynamic method invocation, variable variables, and
dynamic property access, are resolved at runtime. Consider
the following code example:
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1 $methodName=/*dynamic value*/
2 $result = $object->$methodName();

The methodName variable contains a dynamic string value
that is only determined at runtime, and PHP will invoke the
corresponding method on the object using this string as the
method name. Without the ability to precisely determine the
potential values of methodName during static analysis, an in-
complete or imprecise call graph is generated, consequently
compromising the accuracy of taint analysis results.

To infer dynamic values, previous research has identified
three sources of dynamic values: (1) constant strings in code,
(2) external inputs from users, configuration files, databases,
etc., and (3) combinations of constant strings and external
inputs. Existing methods [16, 30] represent dynamic values
using regular expressions. When the dynamic value is a con-
stant string, the regular expression is simply that constant
string. For external inputs, existing works use (.*) as a rep-
resentation. For combinations, the regular expression com-
bines constant strings with (.*). For example, the value of
methodName might be “get(.*)”, and functions whose names
match this regular expression become the target functions.

Although this approach of using regular expressions to
represent dynamic values has been widely adopted in exist-
ing works, we have identified three key limitations in their
value inference process. First, while values may be constants,
they are actually context-dependent—the same constant can
have different values in different contexts. Existing works
lack context sensitivity, leading to imprecise value inference.
Second, existing works’ simplistic use of (.*) to represent
external inputs can result in over-matching when matching
function names. While some works address this by adopting
a strategy of not matching anything when encountering (.*),
this leads to under-matching issues. Third, dynamic values
may be derived through complex string operations involving
loops and regular expressions. Existing works simply reduce
these to (.*), resulting in imprecise or unsound results.These
limitations underscore the significant challenge in precisely
inferring dynamic values through static analysis.

Challenge 2: How to precisely and efficiently detect taint
vulnerabilities in large-scale PHP applications? Precise vul-
nerability detection necessitates accurate modeling of taint
propagation; however, current approaches exhibit several sig-
nificant limitations. First, their handling of taint propagation
for arrays and objects relies on an over-approximation strat-
egy, whereby tainting a single array element results in the en-
tire array being marked as tainted. Second, these approaches
fail to adequately address implicit taint flows introduced by
PHP’s dynamic features, particularly when accessing global
variables through the $GLOBALS superglobal array or when
utilizing variable variables to access properties, where prop-
erty names are determined dynamically based on the value of
another variable, leading to false negatives in detection. More-
over, implementing precise taint propagation tracking through
these elements demands computationally intensive techniques

such as alias analysis, which can result in prohibitive analy-
sis times. Furthermore, existing taint propagation algorithms,
including IFDS [38], face performance bottlenecks when ap-
plied to large-scale applications [10, 22, 28, 29]. Efficiently
and precisely taint tracking presents a significant challenge.

1.2 Solutions
Effective Dynamic Value Inference To address Challenge 1,
we propose a novel approach based on two key characteris-
tics of PHP’s dynamic features. First, dynamic values from
user inputs undergo validation checks before use, generating
constraints that aid in value determination. Second, complex
string operations and data retrieval from databases or con-
figuration files are typically encapsulated within framework
APIs. These APIs generate dynamic values while invoking
corresponding functions, promoting cleaner application code
focused on business logic.

We observe that APIs belonging to the same class share
similar dataflow characteristics during invocation. By cluster-
ing based on these dataflow patterns, we can group APIs by
their respective classes and subsequently identify specific API
calls through their class membership analysis. This approach
circumvents the need to parse complex string operations or
database/configuration file access while maintaining precise
dynamic value determination.

For constant value inference, we introduce a context-
sensitive, flow-sensitive value-set algorithm that incorporates
the aforementioned characteristics to identify user inputs and
framework-induced dynamic values. This comprehensive ap-
proach enables precise computation of potential dynamic val-
ues, significantly improving upon existing methods.

Precise and Efficient Taint Analysis To achieve precise
taint propagation tracking, we implemented object-sensitive
and array index-sensitive analyses, along with the required
alias analysis. For efficient analysis, we developed a sparse
data dependency graph and implemented an on-demand
taint analysis algorithm that constructs the graph only when
taint propagates through function parameters. Similarly, we
adapted both the alias analysis and call graph construction to
operate on-demand. Since both call graph construction and
data dependency graph generation require dynamic values,
we further enhanced efficiency by transforming our value-set
algorithm for dynamic value computation into an on-demand
approach. This comprehensive transformation of core com-
ponents—including taint analysis, alias analysis, and value-
set computation—into on-demand operations significantly
improves the overall analysis efficiency while maintaining
analytical precision.

1.3 Contributions
We implemented our solutions in a new tool named ZIPPER
and evaluated it on 429 taint-style vulnerabilities. The results
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demonstrate that ZIPPER successfully identified 421 of these
vulnerabilities, achieving a low false negative rate of 1.86%
(8/429). The analysis reported 195 false positives, resulting in
a false positive rate of 31.25% (195/624). Both false positive
and false negative rates outperform existing state-of-the-art
approaches. Furthermore, we applied ZIPPER to 100 popular
PHP applications, discovering 11 previously unknown vulner-
abilities, which led to the assignment of 6 CVE identifiers.

The contributions of this paper are summarized as follows:
1. We present ZIPPER, a taint vulnerability detection tool

that implements context-sensitive and flow-sensitive pre-
cise value-set analysis to handle PHP’s dynamic features.
The tool enhances analysis efficiency through on-demand
alias analysis, call graph construction, and data dependency
graph generation.

2. ZIPPER demonstrates superior performance compared to
existing tools in terms of both false positives and false
negatives, as well as in its capability to detect new vulner-
abilities.

3. We release the source code of ZIPPER on our website [5]
to facilitate future research.

2 Motivating Example

This section introduces a motivating example to illustrate how
PHP’s features facilitate flexible application development
while presenting challenges for static analysis.

2.1 Example Overview
The artificially constructed example in Figure 1 (d) and (e)
demonstrates a basic MVC (Model-View-Controller) applica-
tion implemented in PHP. It processes requests and performs
data interactions through the coordinated efforts of key com-
ponents, such as the Dispatcher, SliderController, and
SliderModel.

The Dispatcher class (line 2 in Figure 1 (d)) functions as
the front controller, responsible for handling HTTP requests
and dynamically loading and executing the corresponding con-
troller classes based on URL parameters. Its primary functions
include: a⃝ Parsing URL Parameters. Extracting the con-
troller name and method name from ($_GET[’controller’]
and $_GET[’action’]) (lines 9-10). b⃝ Dynamic File Inclu-
sion. Dynamically generating the file path based on controller
name and using include statement to load the controller file
(line 15). c⃝ Controller Instantiation and Method Invo-
cation. Dynamically instantiating the controller class and
invoking the action method (line 16).

The SliderController in Figure 1 (e) is responsible for
handling user input and interacting with the model, which
performs data operations. Its functionalities include: a⃝
Handling Slider-Related Requests. Processing requests
from the frontend through public methods (e.g., info()
and update()), which are dynamically invoked by the

Dispatcher. b⃝ Interacting with SliderModel. Delegating
the SliderModel to perform data operations and provide it
with user input when necessary, which allows it to dynami-
cally construct SQL queries using variables (e.g., "INSERT
... $data ..." on line 4 of SliderModel.php).

The Uri class provides host-related information to interact
with other components. It is instantiated by both Dispatcher
and SliderController using server data, then stored glob-
ally for dynamic URL generation and displaying welcome
messages. The TestController class, a basic controller for
testing, validates controller loading and method invocation.

2.2 PHP Features
PHP provides several key features that support flexible devel-
opment of applications. These features in Figure 1 include:
Dynamic File Inclusion. PHP’s file inclusion allows
files to be loaded flexibly during program execu-
tion through the include statement (e.g., include
"$controllerClass.php" in line 15 of Figure 1 (d)). This
enables the application to load different controller files based
on user input, making it more modular and configurable.
Dynamic Call. Method Call in PHP can be dynamic, where
method names are stored in variables and called using the
->$action() syntax as seen in line 16 of Figure 1 (d). This
powerful feature allows flexible routing, enabling the applica-
tion to choose methods based on dynamic values.
Dynamic Object Creation. PHP also supports dynamic ob-
ject creation using the syntax new $controllerClass(),
where the class name is stored in a variable (e.g., in line 16 of
Figure 1 (d)). This feature allows the application to create dif-
ferent types of objects based on dynamic values, supporting
flexible factory patterns and dynamic controller instantiation
based on user requests.
Global Data Sharing. The $GLOBALS array in PHP provides
a way to share data across different parts of the application.
As demonstrated by $GLOBALS[’gUri’] in line 12 of Fig-
ure 1 (e), it allows data like the URI to be accessed from any
scope within the application, facilitating data sharing between
different components without explicit parameter passing.

All these features’ behaviors depend on the dynamic values.
Therefore, a precise value inference is essential for analyzing
these features.

2.3 Challenges of Static Analysis Due to PHP
Features

In this section, we illustrate the limitations of existing ap-
proaches through two representative taint vulnerability detec-
tion cases.
Vulnerability Propagation Paths. The example illustrates
two distinct vulnerability propagation paths. The first (XSS)
begins in the info method of SliderController (line 6),
where user input is passed to $uri->host, and its alias is
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<?php
class SliderController {
    public function info() {
        $uri = new Uri($_SERVER['HTTP_HOST']);
        if (!empty($_GET['custom_host']))
            $uri->host = $_GET['custom_host'];
        $this->registerGlobalUri($uri);
        return "Slider: " . D('Slider')->info() . ".";
    }

    private function registerGlobalUri($uri) {
        $GLOBALS['gUri'] = "http://" . $uri->host;
    }

    public function update() {
        D('Slider')->update($_GET['data']);
        return "Slider update completed.";
    }

    public function test() {
        return "Test Message: " . $_GET['message'] . ".";
    }
}
<?php
class TestController {
    public function index() {
        return "Test Message: " . $_GET['message'] . ".";
    }
}
<?php
class SliderModel extends Model {
    public function update($data) {
        $this->db->query("INSERT ... $data ...");
    }

    public function info() {
        return $this->db->query2String("SELECT ...");
    }
}

D('Slider')

D('Slider')

3

<?php
class Dispatcher {
    public function __construct() {

$this->disallowedActions = ['test'];
$this->allowedControllers = ['Slider'];

    }

    public function dispatch() {
        $controller = $_GET['controller'];
        $action = $_GET['action'];

$controllerSuffix = 'Controller';
        if (in_array($controller, $this->allowedControllers) && 

!in_array($action, $this->disallowedActions)) {
            $controllerClass = $controller . $controllerSuffix;
            include "$controllerClass.php";
            $response = (new $controllerClass())->$action();
        }
        echo $this->appendFooter($response);
    }

    private function appendFooter($resp) {
        if (isset($GLOBALS['gUri'])) {
            $resp .= " Welcome to " . $GLOBALS['gUri'];
        } else {
            $uri = new Uri($_SERVER['HTTP_HOST']);
            $resp .= " Welcome to http://" . $uri->host;
        }
        return $resp;
    }
}
<?php
class Uri {
    public $host;
    // omit other attributes for simplify.

    public function __construct($host) {
        $this->host = $host;
    }
}
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Figure 1: Motivation Example. Subfigures (d) and (e) depict an MVC-based application with call and data dependency edges,
while (a), (b), and (c) show false negative and false positive analyses of call graphs generated by four static analysis tools.

then assigned to the global variable gUri via $GLOBALS
(line 12). The Dispatcher later prints gUri wrapped by
appendFooter, causing an XSS vulnerability due to the
lack of sanitization. To detect this, call edges ❶ and ❷,
along with data dependency edges ❹ and ❺ in Figure 1,
are crucial. The second (SQL injection) arises in update
method of SliderController, where user input is passed to
D(’slider’)’s update method (call edge ❸). Since this in-
put is directly included in an SQL query without sanitization,
it leads to SQL injection.

While PHP features offer developer convenience, they cre-
ate significant challenges for static analysis. As illustrated
in Figure 1, we compare ZIPPER with three static analysis
tools (TChecker [30], RIPS1 [16], and PHPJoern [12]) in their
handling of PHP features through a representative example.
The analysis showed that existing approaches have notable
shortcomings in both value inference and taint propagation.
Challenges in Static Analysis. Challenges of dynamic value
inference: a⃝ Dynamic values from constants: Constants can

1Following TChecker, we refer to RIPS’ proprietary version as RIPS-
A [18]. We are unable to apply RIPS-A because its source code is not publicly
available.

be used across multiple function calls and handled by vari-
ous PHP features. For example, in line 4 of Dispatcher.php
(Figure 1(d)), a constant is stored in a dynamic array, as-
signed to an object property, and later used in the dispatch()
method. TChecker fails to infer the value due to its partial
inter-procedural analysis, which cannot reach the construc-
tor of Dispatcher (line 3). RIPS also fails due to its intra-
procedural analysis. Furthermore, dynamic values can have
different values in different calling contexts. b⃝ Dynamic val-
ues from external inputs or complex string operations: Ex-
isting methods use (.*) to model these situation, but this leads
to imprecision in handling dynamic features. For instance,
in line 16 of Dispatcher.php, where a dynamic object is
created depending on the value of $ControllerClass, both
TChecker and RIPS model it as (.*)Controller, causing
all classes ending with Controller to be instantiated.

Challenges of taint propagation: a⃝ Existing methods of-
ten adopt on over-approximation strategy when tracking
taint propagation through objects and arrays. For exam-
ple, TChecker’s object-insensitive taint analysis leads to a
false positive: after tainting the $uri->host at line 6 of
SliderController.php, it incorrectly propagates the taint
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to the host property at line 26 in Dispatcher.php. b⃝ Ad-
ditionally, current methods fail to account for implicit data
flows introduced by dynamic features, such as the data flow
edge ❺ in Figure 1 (d, e) that is propagated through $GLOBALS
rather than conventional variable assignments or parameter
passing. Achieving accurate taint analysis without excessive
computation time remains a significant challenge.

Static Analysis Tool Comparison. Figure 1 presents three
call graphs (a, b, c) generated by four static analysis tools,
where T/SC/S represents TestController/SliderController/S-
liderModel respectively, with method name abbreviations as
subscripts (e.g., SCs for SliderController::show). a⃝ False
Negatives. While RIPS identified the SQL injection vulnera-
bility, it may lead to false positives. The missed detections are
caused by two main issues: first, incomplete call graphs. PH-
PJoern misses the call edges in Figure 1 (a) because it doesn’t
handle dynamic calls. TChecker and PHPJoern both strug-
gle with complex framework semantics from D(’slider’),
causing type inference failures and hindering SQL injection
detection. Second, these tools lack implicit data flow tracking,
missing data flow edge ❺ in Figure 1, which leads to missing
the XSS vulnerability. b⃝ False Positives. Figure 1(c) shows
that both RIPS and TChecker generate incorrect call edges
from 1 to SCt and Ti due to partial class name matching, lead-
ing to the instantiation of all classes ending with Controller.
Additionally, TChecker connects call edges to all methods in
the class because the $action variable comes entirely from
user input. RIPS generates a call edge from 2 to SCi due
to type inference failure, incorrectly associating all methods
named info. All these incorrect call edges may cause poten-
tial false positives. Additionally, even though TChecker can
generate correct call graphs, its object-insensitive taint analy-
sis leads to a false positive on line 26 of Dispatcher.php.

Key Observations. a⃝ Constraints on External Input. We
observe that dynamic values from external inputs are often
constrained by program conditions that limit their possible
ranges. For example, in lines 12-13 of Dispatcher.php, the
if statements constrain controller ∈ {"slider"} ∧ action /∈
{"test"}, which can help ZIPPER determine their value
sets. b⃝ Characteristics for Same API Invocation. APIs
within the same class exhibit similar data flow characteris-
tics during invocation. For example, in lines 8 and 16 of
SliderController.php, the same receiver object is used
to invoke the info method. So we can cluster API invoca-
tions based on data flow characteristics to jointly infer the
receiver object’s type. c⃝ Sparse Access on Sensitive Parts.
Access to object properties, array elements and implicit data
flows is far less frequent than for normal variables. Based on
this observation, we prebuilt the global data dependency on a
sparse graph to accelerate construction speed and defer alias
calculation until the actual usage points, enabling efficient
and precise alias analysis.

Operator Code AnalyzerCode Preprcoessing Constraint Collector§3.2 Call Graph Construction Data Dependency Analysis Operator Code AnalyzerVulnerable Path Searching

§3.1 On Demand Value Set Analysis

1 3 4

Abstract Syntax 
Tree Generation

Control Flow 
Graph Generation

Method Call Handling

Dynamic Call
Handling

File Inclusion Handling

On Demand 
LDDG Construction

Data Dependency 
Graph Traverse

On Demand
Alias Analysis

2

PHP Program 
Source Code Vulnerability

Report

GDDG
Construction

§3.3 Taint Analysis

Figure 2: Overview of ZIPPER

2.4 Threat Model
In this paper, we focus on taint-style vulnerabilities in web ap-
plications and WordPress plugins developed using PHP. Our
threat model assumes that an attacker can provide malicious
input which, due to missing validation or sanitization, prop-
agates to sensitive functions, leading to vulnerabilities like
command injection, SQL injection, or Cross-Site Scripting.
These attacks typically occur through web interfaces and can
result in sensitive data disclosure or system compromise. For
our approach, we make several assumptions about the target
codebase: our tool requires complete access to the source
code, assumes the code follows recognizable patterns (such
as wrapper functions for string operations), is not crafted to
attack the tool (e.g., with adversarial constructs to exhaust
resources), and is not obfuscated to mask its true logic.

3 Methodology

Figure 2 illustrates the value-set analysis framework for PHP
applications within the context of ZIPPER, a precise and effi-
cient taint analysis tool for vulnerability detection. The frame-
work accurately models diverse PHP features to effectively
track value flows. To ensure high efficiency, it adopts an on-
demand strategy that minimizes redundant computations.

ZIPPER starts by building a precise call graph that handles
complex and dynamic language semantics including method
calls, dynamic calls, and file inclusion. Subsequently, the taint
analysis is conducted in two phases for efficiency: (1) IFDS-
based global data dependency tracking, and (2) alias-aware
vulnerable path searching.

Section 3.1 introduces the core idea of our on-demand
value-set analysis (VSA). Section 3.2 demonstrates how to
support on-the-fly construction for call graph. Finally, Sec-
tion 3.3 elaborates on the design of taint analysis.

3.1 Value-Set Analysis
VSA statically determines the possible values of a program
variable, which can include integers, strings, arrays, class ob-
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Program P := F+

Function F := f ($x,$y, . . .){S;}
Statement S := $x = new τ | $x = e

| ArrStore($x,$y,$z) | ObjStore($x,$ f ,$y) |VarStore($x,$y)
| f ($v1,$v2, ...) | return $x | i f ($x){S1;}else{S2;} | S1;S2

Expression e := $y |UaryOp $y | BinaryOp($y,$z)
BinaryOp := ArrLoad | ObjLoad |+ | − . . .

UaryOp := VarLoad | ¬ | − . . .

Figure 3: A simplified language.

Locations ℓ ∈ L Variables $x,$y, · · · ∈V
Fields f ∈ F Integers i ∈ Vint
Strings s ∈ Vstr Arrays a ∈ Varr
Objects o ∈ Vob j Symbolic values V = Vint ∪Vstr ∪Varr ∪Vob j

Environment E :=V 7→ 2V Array state A := Varr × (Vint ∪Vstr) 7→ 2V

Object state O := Vob j ×F 7→ 2V

Figure 4: Analysis domains.

jects, or boolean values (represented as integers).When a vari-
able’s value consists of both concrete (e.g., “get”) and sym-
bolic values (e.g., “$v”), we employ regular expressions (e.g.,
“get (.*)”) for its representation.

3.1.1 Basic Definition

A Simplified Language. For illustration purpose, we formal-
ize our analysis with a simple language in Figure 3, which
uses different notations from PHP. Each loop on the con-
trol flow graph is unrolled once. A new statement takes the
form $x = new τ(), where τ refers to types such as integer,
string, array, or object. Unlike PHP, where a new statement cre-
ates an object of type τ and invokes the constructor function
τ :: __construct(), our simplified language separates these
two operations and requires an explicit call to the constructor
for easier formulation.

In PHP, $$x is a variable variable, meaning that the value
of $x is used as the name of another variable. For example,
if $x holds a string “a”, the statement $$x = $y stores the
value of $y in the variable $a, while $y = $$x loads the value
from $a and assign it to $y, denoted as · · · = VarLoad $x
and VarStore($x, . . .), respectively. Binary operators include
arithmetic operations as well as read operations on arrays
and objects, denoted as ArrLoad and ObjStore, respectively.
Moreover, ArrStore($x,$y,$z) represents a write operation
to an array, corresponding to $x[$y] = $z in PHP, while
ObjStore($x, f ,y) indicates a write operation to an object
property f , corresponding to $x-> f = $y. This language han-
dles only simple function calls of the form f ($x,$y, . . .), as-
suming a prebuilt call graph is available. Section 3.2 illus-
trates how to enable on-the-fly construction to support more
complex PHP language features.

Analysis Domains. Figure 4 presents the analysis domains.
The environment E tracks the symbolic value set for each
variable, where a symbolic value (or value) can be of type
integer (Vint), string (Vstr), array (Varr), and (class) object
(Vob j). Additionally, A(a× k) 7→ {v} means that the element
of array a indexed by k may be symbolic value v, where k can

C::__construct
ObjStore($this, f, "init")

(c) Evaluation for variable $x in bar

C::foo
$v = "s"

$v = $v . "1" $v = $v . "2"

ObjStore($this, f, $v)
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(b) Function summaries
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3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

(a) Example code

$o = new C

ObjStore($o, f, $v)

$x = ObjLoad($o, f)

<?php 
class C {
  public function __construct(){

    $this->f = "init";
  }
  public function foo() {
    $v = "s";
    if (...) $v = $v . "1";

    else $v = $v . "2";
    $this->f = $v;
  }
}
function bar() {
  $o = new C();

  $o->foo();
  $x = $o->f;
}

Figure 5: Example for value set analysis.

be an integer or a string. Similarly, O(o× f ) 7→ {v} denotes
that the field (i.e., property) f of object o may hold value v.

In essence, when processing an on-demand VSA query
at program point p, the analysis first performs a backward
traversal along the control flow graph starting from p. During
the graph traversal, the set of relevant program statements is
collected concisely using function summaries (Section 3.1.2).
Later, these symbolic summaries are instantiated to obtain the
analysis results (Section 3.1.3).

3.1.2 Function Summary Generation

Similar to previous work [16–18, 51], We construct a sym-
bolic function summary to capture the semantics of a method,
comprising block summaries for each of its basic blocks. A
block summary represents its program statements using two
forms: symbolic expressions and symbolic side effects.

Symbolic Expression. A symbolic expression e has a
nested, tree-like structure that effectively models program ex-
pressions, such as binary operations on its sub-expression(s).
A leaf node is a program variable defined outside the current
block, which may also be a parameter. By layering operators
through nesting, a symbolic expression concisely captures
statements along with their data dependencies.

Symbolic Side Effect. As the name suggests, a symbolic
side effect captures program statements that produce side ef-
fects, such as VarStore, ArrStore, and ObjStore, which mod-
ify E, A, and O, respectively. Side effects can also contain
a symbolic expression as a sub-expression. For instance,
ObjStore(e1, f ,e2) indicates that the symbolic objects eval-
uated from expression e1 are updated with values obtained
from evaluating e2.

Summary Generation. A block summary maps each vari-
able x to a set of symbolic expressions Sexpr and a set of
symbolic side effects Seffect. If e ∈ Sexpr, it indicates that the
evaluation result of e–a set of symbolic values–contributes to
the value set of v. Similarly, each symbolic side effect in Seffect
may perform write operations to the value of v. As discussed
above, the types of side effect operation can be ArrStore,
ObjStore, or VarStore. For example, ObjStore($x, f , . . .) in-
dicates a write operation to the property f of objects refer-
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ℓ : $x = new τ()
E($x) = {vτ} [NEW]

$x = e
E($x) = eval(e) [ASSIGN]

e ::= $y v ∈ E($y)
v ∈ eval(e) [VAREXP]

e :=UaryOp e′ v ∈ eval(e′)
v′ =UaryOp∗ v

v′ ∈ eval(e)
[UNARYEXP]

e := BinaryOp(e1,e2) v1 ∈ eval(e1)
v2 ∈ eval(e2) v = BinaryOp∗(v1,v2)

v ∈ eval(e)
[BINARYEXP]

ObjStore(e1, f ,e2) o ∈ eval(e1)
v ∈ eval(e2)
v ∈O(o× f )

[OBJSTORE]

ArrStore(e1,e2,e3) a ∈ eval(e1)
k ∈ eval(e2) v ∈ eval(e3)

v ∈ A(a× k)
[ARRSTORE]

VarStore(e1,e2) s ∈ eval(e1)
let $x be the variable named s v ∈ eval(e2)

v ∈ E($x)
[VARSTORE]

Figure 6: Rules for value set analysis. A symbol ∗ denotes an
abstract version of an operation.

enced by $x.
To ensure flow sensitivity, ZIPPER constructs block sum-

maries for each basic block by traversing its statements in
control flow order. These block summaries are then com-
posed to create function summaries. When a function is first
encountered, its summary is generated and cached. For a call
site, the corresponding function summary is recursively con-
structed. Mutual recursion between functions is handled by
iteratively merging their symbolic summaries until a fixed
point is reached.

Example 3.1. Figure 5(a) and (b) depict a code snip-
pet and the corresponding function summaries for three
methods. Specifically, the constructor for class C, i.e.,
C::__construct, contains a single block summary with
an ObjStore, while C::foo retains four block summaries.
Lastly, we incorporate the summaries of these two meth-
ods to form the summary for bar. Notably, the side effect
ObjStore($o, f ,′′ init ′′) from the constructor is hidden by
ObjStore($o, f ,$v) from C::foo to model flow-sensitivity.

3.1.3 On-Demand Value Set Analysis

In this subsection, we first illustrate an on-demand, intrapro-
cedural analysis, and then show how to perform it interproce-
durally.
Intraprocedural Analysis. When processing a query for vari-
able $x at program point p, a backward traversal starting from
p along the control flow graph is performed to collect sym-
bolic expressions and side effects. These symbolic summaries
are then interpreted using rules in Figure 6. Rule [NEW] cre-
ates a singleton set containing a symbolic value of type τ.

Rule [ASSIGN] evaluates expression e using function eval
and updates the value set of the variable $x.

The auxiliary function eval utilizes three kinds of expres-
sions (as defined in Figure 3), namely [VAREXP], [UNARY-
EXP], and [BINARYEXP] to evaluate variables, unary expres-
sions, and binary expressions, respectively. Here, an operator
with ∗ denotes its abstract version. For instance, the abstract
binary operator ArrLoad∗(v1,v2) retrieves values held by the
element of array v1 indexed by v2, i.e., A(v1 × v2). Addition-
ally, rules [OBJSTORE], [ARRSTORE], and [VARSTORE]
handle three types of symbolic side effects. For PHP built-in
functions, similar to the rules above, ZIPPER evaluates them
based on their semantics. For these rules, kill operations (also
known as strong updates) are performed following previous
work [27].

Example 3.2. Continuing from Example 3.1, we now demon-
strate how to determine the values of $x at line 16. Specifi-
cally, we interpret the method summary of bar, as illustrated
in Figure 5 (c). During this interpretation, since the variable
$v is defined in foo, we further evaluate the symbolic expres-
sions retrieved from foo’s summaries to resolve its values,
which are {′′s1′′,′′ s2′′}. These values are subsequently stored
in the field f of $o and eventually loaded to assign $x.

Interprocedural Analysis. To support interprocedural analy-
sis, we annotate the queried variable with a call stack. This
is crucial when the query depends on the value of a formal
parameter p in the current method, which receives values
from the caller’s actual arguments. In such cases, the query is
propagated to the corresponding call site, facilitating the eval-
uation of parameter p. ZIPPER handle variables not defined in
the current scope, such as global variables, in the same way.

3.1.4 Inference Phase

The analysis presented so far may fail to determine the value
set of a variable when there are data dependencies on user
input values or complex string operations. We further propose
an inference phase to tackle such cases to enable a compre-
hensive analysis.
Inference by Constraints. When the result of VSA is an
empty set or contains a string, we first apply this rule. The
idea behind this rule is to narrow down the variable’s value
range by collecting string constraints on the variable along
the path. To achieve this, we follow three steps: a⃝ Collect
Path Constraints. We start from the basic block containing
the evaluated variable and traverse the control dependency
graph to collect path constraints in symbolic expression form
that reach this basic block. b⃝ Extract Related Constraints.
For each symbolic expressions, we apply VSA on them and
filter expressions that involve the evaluated variable. c⃝ Trans-
form Constraints to Regular Expression. For each remaining
symbolic expression, we convert it into an automata based on
its semantic, such as x ∈ {s1,s2, ...} will translate to s1|s2|....
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Finally, all such automata are intersected to produce a regular
expression that conservatively approximates the value space
of the variable under the collected constraints.

Example 3.3. When evaluating $action variable at line 16
of Dispatcher.php in Figure 1(d), the result of VSA is an
empty set because its value comes from user input. To address
this, we collect the path constraints reaching this basic block
(lines 12-13). After evaluating by VSA and filtering, we ob-
tain the constraint not(in_array(action,{′test ′}). Based on
its semantics, we generate an automaton that does not match
the test string and convert it into a regular expression.

Inference by Characteristics. When value inference fails
and the variable to be evaluated is the receiver object of a
method call, this rule is applied. The rule is based on our
observation that code files with similar functionalities (e.g.,
Controller files) often contain receiver objects of the same
type with similar characteristics. These receiver objects may
share similar names or be assigned by similar function calls,
allowing us to cluster them based on these features and in-
fer their types collectively. To achieve this, we first collect
all method calls from folder containing the receiver object.
For each receiver object, we traverse the control flow graph
to collect its data flow characteristics on block summaries,
including its name, assignment information (such as vari-
able names, function names and arguments). We then cluster
those with same data flow characteristics. For each cluster,
ZIPPER identifies class definitions that include all method
names found within that cluster. Finally, a fake object with
the inferred type is created to facilitate method call resolu-
tion. Notably, when multiple classes define methods matching
names in a cluster, the rule may introduce spurious call edges,
resulting in false positives, as discussed in Section 4.2.

Example 3.4. In SliderController.php of Figure 1 (e),
line 8 and line 16 contain two method calls and their receiver
objects have identical data flow characteristics: the same func-
tion name D and the argument "Slider". Since ZIPPER clus-
ters them together and identifies that only the SliderModel
class contains both the update and info methods, it success-
fully infers their type as SliderModel.

3.2 Call Graph Construction

This subsection demonstrates how we construct a precise call
graph on the fly during value set analysis. In PHP applications,
a function can be invoked in several ways:
• Method call (Section 3.2.1) in the form of $x->m(...),

where the member function m in x’s class definition is in-
voked.

• Dynamic call (Section 3.2.2) based on callable types such
as variable functions 2.

2https://www.php.net/manual/en/functions.variable-functions.php

ℓ : $x->m(...) o ∈ E($x)∩Vob j
m′ = Resolve(o,m)

ℓ
call−−→ m′

[MCALL]

ℓ : $x(...) s ∈ E($x)∩Vstr
m = Resolve(s)

ℓ
call−−→ m

[DCALL-STR]

ℓ : $x(...) o ∈ E($x)∩Vob j
m = Resolve(o,′′ _invoke′′)

ℓ
call−−→ m

[DCALL-OBJ]

ℓ : $x(...) a ∈ E($x)∩Varr
o ∈ A(a×0)∩Vob j

s ∈ A(a×1)∩Vstr m = Resolve(o,s)

ℓ
call−−→ m

[DCALL-ARR]

ℓ : include $x s ∈ E($x)∩Vstr
p = PHPFile(s) m = EntryFunc(p)

ℓ
call−−→ m

[INCLUDE]

Figure 7: Rules for call graph construction.

• File inclusion (Section 3.2.3) utilizes the PHP operator
include to open a specified file, invoking its top-level func-
tions.
Given an invocation statement, ZIPPER identifies the cor-

responding call targets by utilizing the results of VSA. For
example, to resolve the target methods of the call statement
$x->m(...), it is necessary to determine the possible values
that variable x may hold. However, since VSA also relies
on (interprocedural) control flow information provided by
the call graph, an iterative resolution process is employed to
address this mutual dependency.

This process begins at the program’s entry point, progres-
sively resolving new reachable functions through invocation
statements and incorporating additional callsites. The itera-
tion continues until a fixed point is reached, where no further
reachable methods can be discovered. Figure 7 presents a set
of rigorous rules for call graph construction.

3.2.1 Method Call

For ease of discussion, we introduce an auxiliary function,
Resolve(o,s), which resolves the method named s based on
object o’s class definition. When o is not specified, ZIPPER
searches the target method named s in the global namespace.

Given a method call statement, ℓ: $x->m(...) Rule
[MCALL] is employed to determine the potential callees,
which requires the value set of $x. For each symbolic ob-
ject o held by $x, method m′ is resolved based on o’s class
definition.

3.2.2 Dynamic Call

A dynamic call statement takes the form of ℓ: $x(), where
call targets depend on the runtime value of variable $x.
This behavior is modeled using three rules: [DCALL-STR],
[DCALL-OBJ], and [DCALL-ARR].
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Rule [DCALL-STR] resolves functions named s by invok-
ing Resolve(s), where s is a symbolic string value held by
$x.

Rule [DCALL-OBJ] addresses the scenario where a sym-
bolic object o is referenced by $x, considering the magic
method __invoke in o’s class as a potential call target.

Rule [DCALL-ARR] applies when x holds an array a, in-
terpreting the first and second elements of a as a class object
and a method name, respectively, to resolve the callee m.

Notably, built-in functions to facilitate callback mecha-
nisms like call_user_func 3 can be handled in a similar
way by translating call_user_func($callback, ...) to
$callback().

3.2.3 File Inclusion

In PHP, the include operator is used to insert the content of
one PHP file into another during script execution. It allows
code reuse and better modularity by separating logic into dif-
ferent files. If the specified file p is found, its code is included
and executed. For convenience, we call the evaluated code the
entry function of p. Let us introduce two more functions to
facilitate the formalism:
• PHPFile(s) gives the PHP file with name s.
• EntryFunc(p) returns the entry function of a PHP file p.

We then utilize rule [INCLUDE] to simulate this process.
For a symbolic string s held by x, we search the PHP file
named s, then a call edge from line callsite ℓ to the entry
function of the matched file.

3.2.4 Extension

The rules in Figure 7 assume ZIPPER is able to determine
the exact value for a string variable s. Following previous
work [16, 30], when this assumption is broken (e.g., we
may only know the prefix of s), we perform fuzzy match-
ing through regular expressions to resolve the function or file
candidates.

3.3 Taint-style Vulnerability Checking
The program under analysis is represented as a data depen-
dency graph (Section 3.3.1), and alias-aware taint analysis is
formalized as a graph reachability problem [9, 12, 15, 41–43,
46] (Section 3.3.2).

3.3.1 Data Dependency Graph

The data dependency graph (DDG) consists of a Global DDG
(GDDG), which models the data dependencies among global
variables, and Local DDGs (LDDGs), which are generated
on demand for individual methods during graph traversal to
capture data flows between local variables within functions.

3https://www.php.net/manual/en/function.call-user-func.php

Here, static properties of classes are also considered as global
variables.
GDDG. In PHP, the lifetimes of global variables span the
entire execution of the script. Global variables can be ac-
cessed within functions either via the global keyword or the
$GLOBALS superglobal array, while static properties of a class
can be accessed using the :: operator.

To ensure a precise and efficient taint analysis, ZIPPER
first analyzes the def-use relationships for global variables,
and then builds the GDDG to facilitate taint propagation in-
volving these variables. For efficiency, we construct a sparse
interprocedural control graph [37] including only statements
that write or read global variables. Subsequently, an IFDS-
based reaching definition analysis [34, 38] is performed to
construct the GDDG.
LDDG. When taint analysis reaches a new function for the
first time, a corresponding LDDG is constructed on demand,
effectively tracking the def-use relationships for local vari-
ables. This process utilizes the VSA to handle the dynamic
features in PHP such as variable variables and the extract()
function.

3.3.2 Graph Traversal

As is standard practice, the taint analysis takes a set of sources,
sinks, and sanitizers as input [11]. A taint propagation pro-
cess starts from each source node, and traverses the DDG.
When reaching a call site, the propagation steps into all possi-
ble callees, with the corresponding parameters tainted. Upon
reaching a sink, a potential vulnerable path is built.
On-Demand Alias Analysis. To precisely track data depen-
dencies involving heap data—specifically, write and read op-
erations on object properties and array elements, as detailed
in Section 3.1—ZIPPER employs a demand-driven alias anal-
ysis during taint checking. When taint propagates to an object
property or an array element, an alias query is issued to tra-
verse the control flow graph and identify write operations
targeting the aliased memory, guided by the results of the
VSA.
Filtering Infeasiable Paths. For each identified vulnerable
path p, ZIPPER gathers the conditions along p. It then applies
VSA to verify the feasibility of these conditions, filtering out
all infeasible paths to enhance precision.
Context Sensitivity. In the process of forward taint propaga-
tion, we can naturally maintain a function call stack, which
enables us to invoke VSA in a context-sensitive manner.

Example 3.5. Revisiting our motivating example in Figure 1,
we first construct a sparse ICFG with statements manipulat-
ing global variables (lines 22-23 in Figure 1 (d) and line 12
in Figure 1 (e)), and build the GDDG, connecting data flow
edge ❺. We then begin analysis from taint source at line 6 in
SliderController.php. Since info() is encountered for
the first time, we build its LDDG, propagating the taint to
$uri->host on the same line. As an object property, alias
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analysis is triggered, and we follow the ICFG to identify
its alias at line 12 in the same file. Similarly, we construct
an LDDG for registerGlobalUri and propagate the taint
through it and edge ❺ to appendFooter in Dispatcher.php,
ultimately reaching the sink at line 18, where an XSS vulner-
ability is detected.

4 Evaluation

We have implemented the ZIPPER prototype with over 11,365
lines of Scala code to detect three common types of taint-style
vulnerabilities: Cross-Site Scripting (XSS), SQL injection,
and command injection. Our implementation integrates PHP-
Parser [36] for AST generation, Joern’s php2cpg module [54]
for CFG construction, and leverages Heros [14] framework
for IFDS-based reaching definition analysis, where we imple-
mented custom flow functions while reusing Heros’ generic
solver infrastructure. To evaluate the effectiveness of ZIPPER,
we formulated the following research questions (RQs):
• RQ1: How does the performance of ZIPPER compare to

state-of-the-art (SOTA) approaches? (§4.2)
• RQ2: Does ZIPPER benefit from the application of augmen-

tation techniques? (§4.3)
• RQ3: Can ZIPPER find previously undiscovered vulnerabil-

ities in popular real-world applications? (§4.4)

4.1 Experiment Setup
Evaluation Benchmarks. To ensure a fair and unbiased eval-
uation of the performance of various tools, we adopted a
benchmark dataset consisting of 15 PHP applications from
prior works [7–9, 16, 18, 30] , using the same versions that
were tested in these studies. When an application appeared in
multiple studies, we selected the more recent version for our
evaluation. The statistics for these applications are provided
in Appendix A.1. Among these 15 applications, five are pop-
ular and widely-used, such as WordPress and Joomla, each
having garnered over 1,000 stars on GitHub.
Compared Tools. We compare ZIPPER with three up-to-date
academic and open-source PHP static analysis tools, namely
TChecker [30], RIPS [16], and PHPJoern [12, 53, 54]. All the
compared tools are the latest versions. It should be noted that
a comparison with other taint analysis tools, such as Chain-
Saw [8] and RIPS-A [18], is not possible, as they are not
open-source, or with NAVEX [9], due to the lack of critical
function implementations in its codebase.
Evaluation Metrics. To assess the effectiveness of ZIPPER,
the following evaluation metrics are employed:
• Precision: The ratio of the number of true positives to the

total number of the reported vulnerabilities, which includes
both true positives and false positives.

• Recall: The ratio of the number of true positives to the total
number of all the real vulnerabilities, which includes both
true positives and false negatives.

Table 1: The Overall Evaluation Results of RQ1. TP/F-
P/FN stands for true positives/false positives/false negatives
respectively. The best value in a column is highlighted in
bold.

Approach TP FP FN Precision Recall Time

TChecker 71 150 358 32.13% 16.55% 11m26s
RIPS 245 125 184 66.22% 57.11% 13m12s

PHPJoern 285 1882 144 13.15% 66.43% 144m27s

ZIPPER 421 195 8 68.34% 98.14% 30m45s

Ground Truth. The ground truth was constructed through
three stages: candidate collection, manual filtering, and dy-
namic validation. Candidates originated from four tools
(ZIPPER, TChecker, RIPS, PHPJoern) and 60 CVEs, dedupli-
cated by vulnerability type, file path, and sink line number
(2,486 total). Manual filtering of 2,073 tool-derived cases
excluded false positives, yielding 311 candidates for final
validation. Proof-of-concept exploits confirmed 429 true posi-
tives (413 CVE-validated + 16 tool-derived) across 15 PHP
applications. Appendix A.2 provides a comprehensive break-
down of the construction process, with application-specific
vulnerability distribution detailed in Table 4.
Configurations. Experiments were conducted on a machine
with an Intel i9-13900KF @ 3.00 GHz, 64GB RAM, and Win-
dows 10. Baselines were configured as in their original papers,
with consistent definitions of sources, sinks, and sanitization
rules.

4.2 RQ1: Comparison to State-of-the-Art
Overall Results. Comparative analysis (Table 1) demon-
strates ZIPPER’s exceptional performance across key detec-
tion metrics. With 421 true positives and only 8 false nega-
tives, ZIPPER achieves the highest precision of 68.34% and
an impressive recall of 98.14%. This represents a significant
advancement over existing solutions, detecting nearly all vul-
nerabilities while maintaining high accuracy.

The performance gap is substantial when compared to base-
line tools: RIPS, despite having the lowest false positives
(125), only achieves 66.22% precision and 57.11% recall
with 245 true positives. PHPJoern detects 285 true positives
but generates an overwhelming 1,882 false positives, result-
ing in the lowest precision of 13.15%. TChecker shows lim-
ited effectiveness with only 71 true positives and 358 false
negatives, leading to both low precision (32.13%) and recall
(16.55%). While TChecker offers the fastest processing time
at 11 minutes 26 seconds, ZIPPER’s 30-minute processing
time represents a reasonable trade-off given its superior de-
tection capabilities.
Ground Truth Coverage and Unique Vulnerabilities. ZIP-
PER demonstrates its superiority not only in terms of precision
and recall but also in the comprehensiveness of its vulnerabil-
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ity detection. It successfully identified 421 true positives (TPs)
with only 8 false negatives (FNs), significantly outperforming
the three baseline tools. Specifically, ZIPPER covered ALL
299 vulnerabilities collectively detected by the three baseline
tools—PHPJoern, RIPS, and TChecker. Among these, PH-
PJoern identified 285 vulnerabilities, RIPS detected 245, and
TChecker identified only 71.

Additionally, ZIPPER identified 122 unique vulnerabilities
that were not detected by any of the baseline tools, as shown
in Figure 8. Among these, 16 were previously undiscovered
vulnerabilities, meaning they were neither detectable by the
baseline tools nor recorded in CVE database. Notably, 3 of
these 16 vulnerabilities have already been assigned CVE-IDs.
FP Analysis for ZIPPER. The main reasons for false posi-
tives in ZIPPER include: a⃝Unrecognized Sanitization Op-
erations (168): Programs use string operation functions like
substr, preg_replace, etc., to implement custom sanitiza-
tion. However, ZIPPER fails to identify these code snippets
with sanitization semantics, leading to false positives. Identi-
fying these code snippets is outside the scope of ZIPPER and
baselines. b⃝ Incorrect Call Edges (12): We infer the type
of the receiver object based on its data flow characteristics,
which led to 11 false positives in Joomla and 1 in WordPress.
For example, in Joomla, multiple receiver objects with same
data flow characteristics use the set and get methods. How-
ever, multiple classes, such as JInput and Session, contain
both methods, which leads to false positives. c⃝ Dead Code
(11). Vulnerabilities in third-party libraries or test code, which
are unreachable at runtime. d⃝HTTP Response Header Ma-
nipulation (4): Developers use header() to change the web-
page’s rendering mode, such as header("Content-type:
application/csv") in PHPLiteAdmin for CSV rendering.
FN Analysis for ZIPPER. ZIPPER failed to identify a total
of 8 vulnerabilities: 7 in Oscommerce2 and one in Joomla.
In the case of Oscommerce2, ZIPPER was unable to detect
CVE-2020-12058, which encompasses 7 distinct vulnerabili-
ties sharing the same source but with 7 different sink points.
We missed detecting these vulnerabilities because the sani-
tizer was incorrect, rather than missing sanitizer. Regarding
Joomla, ZIPPER failed to detect CVE-2024-21726 due to in-
complete code inclusion in the project. The relevant taint flow
propagation code was located in a third-party library that fell
outside the scope of the analysis.
FP and FN Analysis for PHPJoern & TChecker. The pri-
mary cause of false positives lies in the over-approximate
taint analysis strategies employed by PHPJoern and TChecker.
Specifically, a⃝ for arrays, both PHPJoern and TChecker con-
sider the entire array tainted if any single element is tainted.
b⃝ Regarding object handling, PHPJoern considers the en-
tire object tainted if any of its properties are tainted, while
TChecker implements type-sensitive taint propagation, result-
ing in fewer false positives compared to PHPJoern. However,
false positives still occur. For example, when $obj->m is
tainted and $obj is of type MyClass, TChecker will propa-

gate the taint to all instances of MyClass::m, even if they are
not directly affected.

Excluding false negatives in ZIPPER, the primary reasons
for false negatives in PHPJoern and TChecker lie in call graph
construction and taint propagation. a⃝ Call Graph Construc-
tion. Due to type inference failures, PHPJoern and TChecker
missed method call edges, resulting in 102 and 75 false neg-
atives, respectively. b⃝ Taint Propagation. PHPJoern and
TChecker each missed 42 and 32 vulnerabilities, respectively,
due to failures in alias or global variable tracking. Addition-
ally, TChecker missed 251 vulnerabilities because of issues
in its taint analysis implementation, such as its inability to
track taint sources passed as function arguments.
FN Analysis for RIPS. RIPS does not track taint prop-
agation for object properties, which helps avoid the over-
approximation issues seen in PHPJoern and TChecker, con-
tributing to its higher precision. However, this also acts as a
double-edged sword: while it improves precision, it results in
a higher rate of missed vulnerabilities due to its lack of object
property tracking.
Time Overhead. As shown in Column 7 of Table 1, TChecker
requires the least analysis time (11m26s), followed closely
by RIPS (13m12s). Both tools achieve high efficiency due
to their unsound and incomplete dynamic value inference,
and results in incomplete call graphs and data dependency
graphs, enabling faster but less thorough taint detection. PH-
PJoern, with its over-approximating taint propagation strategy
(such as tainting one array element taints the entire array), re-
quires significantly longer analysis time (144m27s). ZIPPER,
employing on-demand static analysis techniques and more
precise taint propagation (with array-index sensitivity and
field sensitivity), achieves a balance between precision and
performance. Despite generating more complete call graphs
and data dependency graphs through comprehensive value-set
analysis, ZIPPER’s analysis time (30m45s) remains reason-
able—about 1/5 of PHPJoern’s time while being only 2.7
times slower than TChecker and 2.3 times slower than RIPS.

Summary to RQ1: ZIPPER outperforms all baseline tools
with a highest precision of 68.34% and recall of 98.14%.
It identifies 421 true positives and only 8 false negatives,
detecting 122 unique vulnerabilities, including 16 previ-
ously undetected. Although slightly slower than TChecker
and RIPS, ZIPPER offers a favorable trade-off between
efficiency and accuracy, demonstrating its superiority.

4.3 RQ2: Ablation Studies

To understand the contributions of the techniques proposed for
solving these summarized limitations, we performed ablation
studies on each component. We implemented four variants
of ZIPPER: a⃝ ZIPPERUTV , which employs TChecker-style
value-set analysis, following the call graph and def-use chains
of given variables for evaluation. b⃝ ZIPPERNGDD, which
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Table 2: RQ2 Comparison for Four ZIPPER Variants.

Variants TP FP FN Precision Recall Time

ZIPPERUTV 321 245 108 56.71% 74.83% 24m20s

ZIPPERNGDD 403 187 26 68.31% 93.94% 19m39s

ZIPPERNAA 390 154 39 71.69% 90.91% 19m40s

ZIPPERNOD 288 225 141 56.14% 67.13% 1270m46s

ZIPPER 421 195 8 68.34% 98.14% 30m45s

skips GDDG construction and disables handling of variable
variables and the extract() function during LDDG con-
struction. c⃝ ZIPPERNAA, which disables alias analysis during
taint analysis. d⃝ ZIPPERNOD, which disables all on-demand
strategies.
Contribution of Value Set Analysis. To evaluate the contri-
bution of VSA, we implemented the variant ZIPPERUTV . Ben-
efiting from our precise semantic modeling of PHP features
and inference rules, ZIPPER detected 100 more vulnerabilities
than ZIPPERUTV , with an 11.63% improvement in precision,
as shown in Table 2. Of these, 82 vulnerabilities were de-
tected using our inference rules, with 75 inferred through
receiver object clustering and 7 by collecting constraints to
infer user inputs. The remaining 18 were identified through
inter-procedural, PHP features well-handled VSA.
Contribution of Multi-Stage Taint Analysis. To evaluate
the contribution of taint analysis, we implemented the vari-
ants ZIPPERNGDD and ZIPPERNAA. Table 2 shows that com-
pared to ZIPPER, ZIPPERNGDD missed 18 vulnerabilities, with
10 detected through tracking class static properties and 8
through tracking global variables. Although ZIPPER identified
31 more vulnerabilities through alias analysis, its precision
dropped by 3.35%. This is due to alias analysis introducing
more taint propagation paths, resulting in additional false
positives, as discussed in section 4.2.
Contribution of On-Demand Strategy. The ZIPPERNOD

variant was used to investigate whether the on-demand strat-
egy makes our analysis scalable. In our evaluation, a 3-hour
time limit was set for each project. Ultimately, ZIPPERNOD

timed out on five projects with over 35k LLoC, leading to
faster degradation of TP than FP, and a resulting decline in
precision. When constructing the global object/array data de-
pendency graph, analyzing the point-to set for each access to
object properties and array elements becomes computation-
ally expensive, especially when there are numerous access
points in the program.

Summary to RQ2: The evaluation demonstrates the effec-
tiveness of each component of ZIPPER. The precise value
set and taint analysis improved precision and contributed
to the detection of 122 additional vulnerabilities. Addi-
tionally, the on-demand strategy enhanced the scalability
of our analysis.

4.4 RQ3: Real-world Vulnerabilities

To demonstrate the practical applicability of ZIPPER, we ap-
plied it to real-world popular projects. The projects were
chosen based on two specific criteria: a⃝ GitHub PHP open-
source projects with more than 100 stars; b⃝ WordPress plug-
ins with over 5,000 active installations. Based on these criteria,
we randomly selected 80 GitHub open-source projects and
20 WordPress plugins, totaling 100 projects (including well-
known projects such as WordPress and phpMyAdmin). As
shown in Table 3, ZIPPER identified and reported 11 vulner-
abilities and assigned 6 CVE-IDs after two man-months of
effort—primarily spent on manual validation, including dis-
tinguishing new vulnerabilities from known issues and setting
up project-specific environments and PoCs.
False Positive Analysis. ZIPPER produced 195 reports across
100 projects, among which 118 were identified as true posi-
tives, resulting in a precision of 60.51%. The 77 false positives
align with the causes discussed in Section 4.2: 72 stem from
ZIPPER’s inability to recognize code snippets with sanitiza-
tion or validation semantics, and 5 are due to dead code, where
the vulnerable modules are never executed at runtime.
Case Study ❶ Onethink is an content management frame-
work built on ThinkPHP. When inferring the type of the re-
ceiver object for the method call on line 9 in Figure 9, ZIP-
PER identifies other method calls with D(’Model’) as the
receiver object (line 5). By applying heuristic rules, ZIPPER
discovers that the ModelModel class contains both generate
and getTables methods, inferring their type as ModelModel.
This allows ZIPPER to correctly construct the call edges and
detect the SQL injection vulnerability on line 20. In contrast,
RIPS, which uses name-based matching, finds three methods
named generate in the project, leading to an imprecise call
graph that could result in false positives. Meanwhile, PHPJo-
ern and TChecker fail to infer the types, missing the call edges
and consequently missing the vulnerability.
Case Study ❷ Multi-Step-Form is a WordPress plugin for
building forms. Figure 10 presents a simplified code snippet
for better clarity. from_aa receives a taint source, extracts
the title element to instantiate the Step_Part class, and
stores it in the $this->parts array. Then, through a for loop,
it retrieves each $part from the parts array and calls its
render_title method, accessing the title property (alias
of line 5) and triggering the XSS vulnerability. ZIPPER detects
this vulnerability by accurately inferring the type of $part
from dynamic array using PHP features well-handled value
set analysis, and tracks taint propagation through precise alias
analysis. PHPJoern and TChecker fail to detect this vulner-
ability as they miss the method call edge due to failed type
inference. Even if TChecker is able to connect the call edge,
its object-insensitive taint analysis results in false positives at
other echo points of the title property.
Responsible Disclosure. Considering the potential risks of
the vulnerabilities identified in our research, we responsibly
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Table 3: RQ3 Zero-Day Vulnerabilities Detected by ZIPPER.
SQLi/XSS/Cmdi/A.I. stands for SQL injection/Cross-Site Scripting/Com-
mand injection/Active installations respectively.

No. Application Stars/A.I. Vuln. Type Status
#1

PicUploader 1.2k
SQLi Fixed

#2 SQLi Fixed
#3 SQLi Fixed
#4 onethink 381 SQLi Confirmed & CVE-Assigned
#5

Cacti 1.7k

SQLi Fixed & CVE-Assigned
#6 XSS Fixed & CVE-Assigned
#7 XSS Fixed & CVE-Assigned
#8 Cmdi Fixed
#9 Cmdi Fixed & CVE-Assigned
#10 ProfileGrid 7k XSS Fixed & CVE-Assigned
#11 Multi-Step-Form 10k XSS Fixed

disclosed the findings to the project maintainers. Specifically,
we reported these vulnerabilities to the relevant developers
via email or designated channels and provided recommended
strategies for fixing them. We also refrained from making our
findings public for at least 90 days after disclosure. We col-
laborated with the maintainers of the respective projects and
MITRE to responsibly disclose these vulnerabilities, resulting
in the assignment of 6 CVE IDs to date.

Summary to RQ3: ZIPPER effectively detects vulnerabil-
ities in real-world projects. Its precise value set analysis
and taint analysis enable it to identify more vulnerabilities.

5 Discussion

Dynamic Features in Other Programming Languages While
our work primarily focuses on PHP’s dynamic features, it is
important to note that similar dynamic characteristics exist in
other dynamic programming languages such as Python and
JavaScript. For instance, JavaScript supports dynamic method
invocation through runtime-determined function names. Con-
sider the following example:

1 const str = "hello";
2 const methodName = "toUpperCase";
3 str[methodName](); // Outputs: "HELLO"

This code demonstrates dynamic method resolution where the
toUpperCase method is invoked through a variable contain-
ing the method name, rather than through direct invocation.
Such dynamic features are not unique to PHP but are common
across various dynamic programming languages.
Limitation of ZIPPER a⃝ Selective Implementation of PHP
Dynamic Syntaxes Given the engineering effort required to
support PHP’s dynamic features, ZIPPER prioritizes those
used in over 75% of PHP projects [7], as well as the top
four features listed in Table 5. ZIPPER currently supports a
subset of dynamic syntax, including dynamic array, file inclu-
sion, dynamic functions, and variable variables. In contrast,
features such as __get/__set magic methods, references,

closures, and match expression are not supported due to rela-
tively low frequency. Section 4.2 confirms that these features
introduce no FNs/FPs under the known ground truth in our
dataset, which supports our prioritization. We acknowledge
that such issues may exist in the wild and are not captured
due to dataset limitations. b⃝ Imprecise Inference of Dy-
namic Values Although VSA infers dynamic values through
static analysis, it struggles with complex string operations
outside the framework. Its heuristic rules may also not be
applicable to all scenarios, leading to false positives or false
negatives. Moreover, VSA adopts a branch-insensitive ap-
proach by merging states at control-flow joins for scalability,
but this approximation may lead to imprecise call graph and
alias analysis. c⃝ Limitations in Web Framework Func-
tions Modeling ZIPPER currently focuses on modeling PHP
built-in functions to cover core language features, but does
not yet explicitly support framework-specific APIs, which
may result in false positives or false negatives in projects
that rely on such framework APIs. d⃝ Lack of Support for
Second-order Vulnerabilities Detecting second-order vulner-
abilities requires tracking taint propagation through databases,
which involves modeling schemas, analyzing SQL queries,
and identifying taint write/read points. However, the wide
variety of database access methods, such as native SQL and
ORM libraries, makes this task complex; therefore, support
for second-order vulnerabilities is deferred to future work. e⃝
Constraints of Analysis Scope ZIPPER is unable to iden-
tify code snippets with sanitization semantics. Additionally,
it does not analyze third-party code and currently supports
only three types of taint vulnerabilities, which limits its de-
tection capabilities. f⃝ Semantic Gaps Between Code and
Symbolic Representation Static analysis tools inherently use
program abstractions. ZIPPER employs semantic abstraction
and over-approximation for feasibility, which may introduce
a semantic gap with the original code (e.g., currently miss-
ing support of closure) and lead to false positives or false
negatives.

Potential Improvements of ZIPPER a⃝ More Language
Support While adapting to more programming languages
requires specific handling of their dynamic features, many of
our core methodologies—including the value-set algorithm,
on-demand alias analysis, and taint analysis—can be effec-
tively transferred to applications in other languages. b⃝More
PHP Syntaxes. The syntaxes not yet supported by ZIPPER
can be addressed by extending the symbolic expressions and
analysis domains in VSA. For example, closures can be natu-
rally supported by incorporating functions into the analysis
domain. c⃝More Vulnerability Types The tool’s detection
capabilities can be enhanced in two ways. First, by configur-
ing more types of sources and sinks, we can detect a broader
range of taint-style vulnerabilities. Second, other logical vul-
nerabilities, such as permission check vulnerabilities, can be
transformed into taint-style vulnerabilities for detection, lever-
aging existing research approaches. Third, by applying ex-
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isting database/SQL statement analysis techniques [45], ZIP-
PER can be extended to identify second-order vulnerabilities.
d⃝More Automated Source Identification Currently, source
points vary across different applications and manual specifi-
cation is time-consuming. Given that large language models
(LLMs) have been trained on extensive codebases and possess
broad knowledge of various programming patterns, they could
potentially be leveraged for automated source identification.
e⃝Modeling Web Framework Functions These APIs from

framework can be supported similarly by enhancing VSA with
the semantics of transformation functions and resolving call-
backs through VSA. f⃝ Trade-off Between False Positives
and Negatives ZIPPER currently lacks configurable parame-
ters for tuning the false positive/negative trade-off. Its analysis
precision relies on core techniques like context-sensitive VSA
and alias analysis rather than adjustable settings. We aim to
introduce such options in future work.

6 Related Work

In this section, we review prior work in PHP application vul-
nerability detection, including static and dynamic approaches,
and value set analysis techniques for dynamic value infer-
ence. Our review emphasizes challenges in handling PHP’s
dynamic features.

6.1 PHP Application Vulnerability Detection
Static Approaches. Static methods can be categorized into
classical taint analysis [16, 18, 23–26, 30, 51], recurring vul-
nerability detection [44, 52], machine learning-based code
auditing [31, 39, 40]. WebSSARI [23] uses a lattice-based
type system to detect taint vulnerabilities in PHP but is
intra-procedural and lacks support for dynamic features. Xie
[51] models program behavior with function summaries, but
it’s context-insensitive and doesn’t handle built-in functions.
RIPS [16, 18] extends Xie’s approach to model dynamic
features and built-in functions, though it’s limited to intra-
procedural analysis. Pixy [24–26] improves taint analysis
with constant propagation and alias analysis but doesn’t sup-
port many PHP features like object properties. TChecker [30]
provides inter-procedural, context-sensitive taint analysis and
supports taint propagation for objects and arrays. However,
its value inference is partial inter-procedural, and its alias
analysis is object-insensitive. These methods employ intra-
procedural or context-insensitive analysis with regex match-
ing for dynamic objects, leading to false positives/negatives.
ZIPPER combines context-sensitive VSA with two inference
rules to effectively narrow type candidates. Moreover, tra-
ditional taint analysis builds full def-use chains with coarse
handling of object properties and array indices, incurring high
overhead and reduced precision. ZIPPER instead constructs a
sparse GDDG, performing local dependency and alias analy-
sis only as needed, improving both scalability and accuracy.

Dynamic Approaches. The main dynamic methods for de-
tecting vulnerabilities in PHP applications is fuzz testing,
which can be classified into black-box, gray-box, and white-
box based on available execution information. Black-box
fuzzing [19, 20] detects vulnerabilities from application re-
sponses, while building a navigation graph, identifying data
dependencies and collecting input constraints from frontend.
Gray-box fuzzing [21, 47] instruments web apps to gather
detailed state for deeper analysis. White-box fuzzing [55]
uses static analysis to identify potential vulnerabilities and
provides feedback to the fuzzing.

6.2 Value Set Analysis
Value-set analysis is a foundational technique in static anal-
ysis used to construct data dependencies and analyzing ad-
vanced language features like reflection. [13] introduced a
VSA method for binary programs, using abstract domains
to approximate integer values at program points, mainly for
security analysis. [32,56] infer value sets in Java through inter-
procedural backward slicing and forward simulation to detect
information leaks. [33,50,51] approximate string outputs with
context-free grammars. However, these methods mainly focus
on string type and do not account for PHP’s dynamic features.
To address this, ZIPPER (1) extends VSA to object and array
domains using demand-driven analysis for scalability; (2) in-
corporates inference rules for external inputs and complex
string operations to effectively infer string values and object
types. To our knowledge, VSA has not been applied to other
dynamic languages such as Python or JavaScript.

7 Conclusion

In this paper, we presents ZIPPER, a novel static analysis
framework that addresses two key challenges: accurately in-
ferring PHP’s dynamic values and efficiently analyzing large-
scale applications. ZIPPER achieves this through a context-
sensitive, flow-sensitive value-set algorithm and an efficient
on-demand taint analysis. Evaluation on 429 known vul-
nerabilities demonstrates ZIPPER’s effectiveness, achieving
the highest precision of 68.34% and an impressive recall of
98.14%, while analysis of 100 popular PHP applications re-
vealed 11 new vulnerabilities, leading to 6 CVE assignments.
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Appendix

A.1 Evaluation Benchmarks
To support our evaluation, we provide detailed statistics in
Table 4 for the 15 PHP applications used as benchmarks in
our study. These applications were selected based on their
prior use in well-established research and cover a range of
sizes and popularity levels.

Table 4: Statistics of Evaluation Benchmarks. Here, #LLoC
means logical lines of codes for each project. #Stars refers to
the number of stars a project has received on GitHub. #Vuln.
refers to the number of vulnerabilities present in this project,
as determined by the steps described in Appendix A.2. “NA”
indicates that a project does not have a star count. The symbol
‡ denotes popular and well-known real-world applications
with more than 1k stars.

Application #LLoC #Stars #Vuln. Source
Codiad (v2.8.4)‡ 8,267 2.8k 34 [7, 9, 30]
Collabtive (v3.1) 171,968 215 2 [9, 30]
cpg (v1.6.12) 64,324 68 2 [9, 30]
Ecommerce-CodeIgniter-Bootstrap‡ 61,078 1.3k 98 [30]
Joomla (v3.10.3)‡ 273,754 4.8k 1 [7, 9, 18, 30]
Mini-Inventory-and-Sales-Management 35,115 513 20 [7]
monstra (v3.0.4) 24,398 397 11 [30]
oscommerce2 (v2.3.4.1) 60,831 281 37 [9, 16, 30]
phpLiteAdmin (v1.9.8.2)‡ 9,479 175 7 [30]
razor (v0.8.0)‡ 91,531 1.1k 79 [7]
stock-management-system 42,002 181 10 [30]
webchess (v0.9) 3,924 NA 103 [8, 9, 30]
WeBid (v1.2.2) 34,614 115 14 [8, 9, 30]
WordPress (v5.4.8)‡ 249,847 19.8k 1 [7, 9, 18, 30]
zencart (v1.5.5) 110,163 382 10 [9, 30]

A.2 Ground Truth Construction
We established the ground truth dataset through a systematic
three-phase methodology to enable reliable precision/recall
evaluation:
1. Candidate Collection. The candidate vulnerabilities orig-

inated from two complementary sources:
• Static Analysis Detection. 2,478 potential taint vulner-

abilities identified by ZIPPER and three baseline tools
(TChecker, RIPS, and PHPJoern).

• CVE Database Mining. Known taint vulnerabilities doc-
umented in the CVE database and related to the evalu-
ated benchmarks. We employed specific keywords such
as “XSS”, “SQL injection”, and “command injection”,
combined with project names from Table 4 (e.g., "XSS
WordPress"), to search for relevant entries. Second-order
vulnerabilities were excluded from our analysis, as they
fall outside the detection scope of both ZIPPER and the
baseline tools. For the remaining CVEs, we located their

corresponding files or patches; those without available
information were also filtered out. We then analyzed
these files or patches to determine whether our target
versions were affected by these vulnerabilities. Through
this systematic process, we identified a total of 60 rele-
vant CVEs, encompassing 413 individual vulnerabilities.

After deduplication across the two sources—based on vul-
nerability type, file path, and the sink line number—we
obtained 2,486 unique candidate vulnerabilities, including
all 60 confirmed relevant CVEs.

2. Manual Filtering. After excluding the 413 CVE-validated
vulnerabilities, we manually reviewed the remaining 2,073
static analysis reports to eliminate false positives. This
process focused on two primary sources of inaccuracy:
• Over-approximation in complex data structures — par-

ticularly imprecise taint propagation through arrays, ob-
jects, and nested containers.

• Properly sanitized input paths — cases where user input
was mitigated by built-in or application-specific sanitiza-
tion routines, breaking the taint flow to sensitive sinks.

This preliminary verification phase required approximately
one man-month of expert effort. As a result of this manual
assessment, 311 candidate vulnerabilities were retained
for subsequent in-depth validation.

3. Dynamic Validation. For the remaining 311 candidate vul-
nerabilities, we created proof-of-concept (PoC) exploits
for dynamic validation. In a controlled environment, these
PoCs were used to simulate attacks and verify the ex-
ploitability of the vulnerabilities. If the PoC successfully
triggered the vulnerability and caused the expected se-
curity event, the vulnerability was considered valid and
added to the ground truth. This validation required two
man-months of effort.
In total, we established a comprehensive ground truth

dataset consisting of 429 vulnerabilities (413 from CVE
database and 16 from static analysis tools). The distribution
of these vulnerabilities across different applications is shown
in the fifth column of Table 4.
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A.3 UpSet Plot for ZIPPER and Beselines

Figure 8: RQ1 UpSet Plot for ZIPPER and Beselines. It illus-
trates the details of the intersections among the true positive
sets found by ZIPPER and baselines.

A.4 Case Study for RQ3

1 <?php
2 class ModelController extends AdminController {
3 public function generate() {
4 if (!IS_POST) {
5 $tables = D('Model')->getTables();
6 // ...
7 } else {
8 $table = I('post.table');
9 $res = D('Model')->generate($table,

I('post.name'), I('post.title'));↪→

10 // ...
11 }
12 }
13 }
14

15 class ModelModel extends Model {
16 public function getTables() {
17 // ...
18 }
19 public function generate($table,

$name='',$title=''){↪→

20 $fields = M()->query('SHOW FULL COLUMNS FROM
'.$table);↪→

21 // ...
22 }
23 }

Figure 9: An SQLi vulnerability in Onethink

1 <?php
2 class Step_Part {
3 private $_title;
4 public function __construct($title) {
5 $this->_title = $title;
6 }
7 public function render_title() {
8 echo $this->_title;
9 }

10 public static function from_aa($aa) {
11 $title = isset($aa['title']) ? $aa['title'] :

'';↪→

12 // ...
13 return new Step_Part($title, ...);
14 }
15 }
16 // ...
17 $this->parts[] =

Step_Part::from_aa(taint_source());↪→

18 // ...
19 for ($i = 0; $i < $cnt; $i++) {
20 $part = $this->parts[$i];
21 $part->render_title();
22 }

Figure 10: An XSS vulnerability in Multi-Step-Form

A.5 Usage Statistics and ZIPPER Support Sta-
tus of PHP Syntaxes

Table 5: Usage Statistics and ZIPPER Support Status of
Partial PHP Syntaxes in 115 Projects Used for Evaluation.
“✓” indicates this feature is supported by ZIPPER, while “✗”
indicates it is not. We annotate each PHP feature with its
support status in ZIPPER. Features marked as unsupported
are considered for future extensions.

No. PHP Syntax # of Projects ZIPPER Support
1 Dynamic Array 112 ✓

2 File Inclusion 112 ✓

3 Dynamic Functions 89 ✓

4 Variable Variables 74 ✓

5 Reference 67 ✗

6 Closure 38 ✗

7 __get/__set Magic Methods 34 ✗

8 match Expression 11 ✗
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