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CloudRaid: Detecting Distributed Concurrency
Bugs via Log Mining and Enhancement

Jie Lu, Feng Li, Chen Liu, Lian Li, Xiaobing Feng and Jingling Xue

Abstract—Cloud systems suffer from distributed concurrency bugs, which often lead to data loss and service outage. This paper
presents CLOUDRAID, a new automatical tool for finding distributed concurrency bugs efficiently and effectively. Distributed concurrency
bugs are notoriously difficult to find as they are triggered by untimely interaction among nodes, i.e., unexpected message orderings. To
detect concurrency bugs in cloud systems efficiently and effectively, CLOUDRAID analyzes and tests automatically only the message
orderings that are likely to expose errors. Specifically, CLOUDRAID mines the logs from previous executions to uncover the message
orderings that are feasible but inadequately tested. In addition, we also propose a log enhancing technique to introduce new logs
automatically in the system being tested. These extra logs added improve further the effectiveness of CLOUDRAID without introducing
any noticeable performance overhead. Our log-based approach makes it well-suited for live systems.
We have applied CLOUDRAID to analyze six representative distributed systems: Hadoop2/Yarn, HBase, HDFS, Cassandra, Zookeeper,
and Flink. CLOUDRAID has succeeded in testing 60 different versions of these six systems (10 versions per system) in 35 hours,
uncovering 31 concurrency bugs, including nine new bugs that have never been reported before. For these nine new bugs detected,
which have all been confirmed by their original developers, three are critical and have already been fixed.

Index Terms—Distributed Systems, Concurrency Bugs, Bug Detection, Cloud Computing.
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1 INTRODUCTION

D Istributed systems, such as scale-out computing frame-
works [1], [2], distributed key-value stores [3], [4],

scalable file systems [3], [4] and cluster management ser-
vices [2], are the fundamental building blocks of modern
cloud applications. As cloud applications provide 24/7
online services to users, high reliability of their underlying
distributed systems becomes crucial. However, distributed
systems are notoriously difficult to get right. There are widely
existing software bugs in real-world distributed systems,
which often cause data loss and cloud outage, costing service
providers millions of dollars per outrage [5], [6].

Among all types of bugs in distributed systems, dis-
tributed concurrency bugs are among the most trouble-
some [7], [8]. These bugs are triggered by complex inter-
leavings of messages, i.e., unexpected orderings of commu-
nication events. It is difficult for programmers to correctly
reason about and handle concurrent executions on multiple
machines. This fact has motivated a large body of research on
distributed system model checkers [9], [10], [11], [12], which
detect hard-to-find bugs by exercising all possible message
orderings systematically. Theoretically, these model checkers
can guarantee reliability when running the same workload
verified earlier. However, distributed system model checkers
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face the state-space explosion problem [9]. Despite recent
advances [9], it is still difficult to scale them to many large
real-world applications. For example, in our experiments
for running the WordCount workload on Hadoop2/Yarn,
5,495 messages are involved. Even in such a simple case, it
becomes impractical to test exhaustively all possible message
orderings in a timely manner.

This paper proposes a novel strategy for detecting dis-
tributed concurrency bugs. Instead of trying all possible
message orderings exhaustively, we test selectively only
those message orderings that are likely to expose bugs.
Which message orderings are likely to trigger errors then?
We address this key question based on two observations:

Observation1. In bug-triggering message orderings,
their corresponding message handlers are access-
related, i.e., access shared resources. Errors can be
triggered when the shared resources are accessed
inconsistently under different message orderings.

Observation2. Large-scale online applications pro-
cess millions of user requests per second. Many
permutations of message orderings have already been
extensively tested and exercised in these live systems.
Using these tested message orderings to expose errors
is unlikely to be beneficial.

1.1 The Approach
Therefore, we introduce a log-based approach that learns
from previous executions to uncover the message orderings
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that are likely to expose errors, i.e., access-related message
orderings that are feasible but not yet tested. Since we
harness the rich execution history from live systems, a
non-intrusive log-based approach is thus desirable. Modern
cloud applications often provide a rich set of runtime logs,
which record important events, to help with the diagnosis
and monitoring of online systems. Our log-based approach
makes it well-suited for live systems, for which intrusive
instrumentation is often not an option.

According to a previous study [8], more than 60%
distributed concurrency bugs can be triggered by a single
untimely message delivery. Therefore, our approach focuses
on examining the orderings between a pair of messages.
Errors involving more than two messages can be handled by
considering multiple pairs of messages together as follows:

● Starting from a pair of access-related messages <
S,P >, where S always arrives before P , i.e., S ↣ P
(according to existing logs), our approach tries to
flip the order so that P ↣ S can be also exercised,
provided that both messages may happen in parallel.

● For two pairs < S,P > and < P,Q >, we exercise first
P ↣ S and Q ↣ P individually and then P ↣ S
and Q ↣ P together. Thus, all permutations of the
three messages are tried. Similarly, message sequences
involving more messages are handled.

Our approach focuses on detecting the bugs caused by
order violation, i.e., the bugs which manifest themselves
whenever a message arrives at a wrong order with respect to
another event. The majority of these bugs can be exposed by
reordering a pair of messages, as suggested previously [8].
However, relatively few but critical bugs still occur when
more than two messages are involved. These bugs can only
be exposed under special timing conditions, involving, for
example, some specific messages or events (e.g., node crashes
or reboots). To detect such errors, we have empowered
our approach with the capability of reordering an arbitrary
number of messages for an application.

1.2 The Tool

We have designed and implemented CLOUDRAID, a new tool
for detecting distributed concurrency bugs efficiently and
effectively. CLOUDRAID extracts automatically sequences
of important communication events from existing run-time
logs, enriched by also a new log enhancing technique. Only
permutations of these access-related message orderings will
be tested, provided that they are feasible but not yet exercised.
A dynamic trigger is employed to exercise the selected
message orderings at runtime.

We have applied CLOUDRAID to six representative dis-
tributed systems: Hadoop2/Yarn [2], HDFS [13], HBase [3],
Cassandra [4], Zookeeper [14], and Flink [15]. CLOUDRAID
is simple to deploy as the system under testing first runs
without any modification. Then in a separate testing phase,
our dynamic trigger performs minimal instrumentation to
test a specific message ordering. In our evaluation, we have
chosen randomly 60 different versions of these systems
(10 versions per system) and run a total of six different
workloads on these systems. CLOUDRAID runs for 3200
times in 35 hours, where each run tries to exercise a specific

message ordering. We have successfully triggered 31 bugs
(with no false positives), including nine new bugs that have
never been found before. All the nine new bugs have been
confirmed by the original developers, with three of them
considered as critical bugs and thus already fixed.

This paper makes the following contributions:

● We propose a new approach, CLOUDRAID, for de-
tecting concurrency bugs in distributed systems ef-
ficiently and effectively. CLOUDRAID leverages the
run-time logs of live systems and avoids unnecessary
repetitive tests, thereby drastically improving the
efficiency and effectiveness of our approach.

● We describe a new log enhancing technique for
improving log quality automatically. This enables
us to log key communication events in a system
automatically without introducing any noticeable
performance penalty. The enhanced logs can further
improve the overall effectiveness of our approach.

● We have evaluated extensively CLOUDRAID using six
representative distributed systems: Hadoop2/Yarn,
HBase, HDFS, Cassandra, Zookeeper, and Flink.
CLOUDRAID can test 60 different versions of these six
systems (with six workloads in total) in 35 hours, and
detect successfully 31 concurrency bugs. Among them,
there are nine new bugs, including three critical ones,
which have been fixed by their original developers.

The rest of the paper is organized as follows. Section 2
illustrates our approach using a real-world example. Section 3
presents the design and implementation of CLOUDRAID.
Section 4 evaluates its efficiency and effectiveness. Section 5
reviews the related work. Finally, Section 6 concludes.

2 A MOTIVATING EXAMPLE

Figure 1 gives an example that illustrates a typical scenario
for creating a new task in Hadoop MapReduce. There is a
concurrency bug known as MAPREDUCE-3656.

The Bug. The two messages, (5) and (9), that trigger
the MAPREDUCE-3656 bug, together with their corre-
sponding event handlers, are highlighted in red. During
the normal execution, the remote procedure call (RPC) to
startContainer finishes its execution quickly. Hence, the
ASSIGNED event (i.e., message (5)) is always dispatched
and handled before the UPDATE event (i.e., message (9)).
However, there is no happen-before relation in between. If
the UPDATE event arrives before the ASSIGNED event (due
to an unexpected delay in T1, e.g., insufficient resources in
AM), an error is triggered and the task cannot be created.

The Root Cause. The event handler implements a state
machine for each task to update its status according to the
incoming events. The state machine expects to always process
the UPDATE event after the ASSIGNED event. Otherwise, an
error will be thrown, leading to job fail. The fix is to introduce
smart synchronizations to guarantee that the ASSIGNED
event always arrives before the UPDATE event.

Among all the messages for this example, the message
pair <(5), (9)> is the root cause of the error. Both messages
are handled by the same event handling method to update
the same variable for the task status. How can we select
automatically the message order (9) ↣ (5) among all the
messages? Let us dig into some technical details below.

https://issues.apache.org/jira/browse/MAPREDUCE-3656
https://issues.apache.org/jira/browse/MAPREDUCE-3656
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Fig. 1. A real-world example for starting a new task in Hadoop2, with
the messages (5) and (9) for triggering the MAPREDUCE-3656 bug
and their corresponding event handlers being highlighted in red. AM
is an application manager node, NM is a node manager node, and
TASK is the node for running the task. (1) Thread T0 in AM creates a
new thread T1. (2) T1 invokes the remote procedure StartContainer
to start a container on NM (Thread T2). (3) In StartContainer, T2

creates another thread T3. (4) The RPC to StartContainer returns to
T1. (5) After returning from StartContainer, T1 sends an ASSIGNED
event to the event queue. (6) The ASSIGNED event is dispatched to
the event handler T6, with the TASK state updated to ASSIGNED. (7)
T3 starts a new process to run the task on node TASK using a shell
script (Thread T4). (8) T4 invokes the remote procedure statusUpdate
on AM (Thread T5). (9) In T5, statusUpdate sends an UPDATE event
to the event queue. (10) The UPDATE event is dispatched to the event
handler T6 to update the TASK state to UPDATED. (11) The RPC to
statusUpdate returns to T4.

2.1 Source Code and Runtime Logs

Figure 2 gives a code snippet abstracted for our example in
Figure 1. The lines for sending messages are highlighted in
red. We call those source locations for sending messages
static messages. Hereafter, we write M to denote a static
message and Mi for one of its dynamic instances.

Static messages manifest themselves in three common
patterns, thread creation (message (1) in line 3), RPC (mes-
sage (2) in line 11), and event dispatch (message (5) in
line 12 and message (9) in line 38). For simplicity, the
code for sending messages (3) and (7) is elided. The event
handling method EventHandler.handle (line 19) calls
StateMachine.doTransition, which invokes different
callback functions to handle different types of events. Here
we present a simplified version with callbacks inlined.

The lines highlighted in bold log static messages. All
messages, except for the RPC return (messages (4) and (11))
and the call to the shell script (message (7)), are logged. A
message is often logged at the entry of its corresponding
handler. Message (9) (line 38) follows immediately after
message (8) (RPC to statusUpdate in line 36). Hence, a
common log (line 37) is introduced to serve both messages
for performance reasons. In this case, we group the two static
messages together, denoted as (8,9).

A log consists of constant strings and values of variables.

The code snippet in Figure 2 will execute multiple times at
run time, resulting in multiple dynamic instances per static
message and multiple log instances. The values of variables
in the log instances are used to distinguish each dynamic
instance. Figure 3 shows the two simplified runtime logs for
two different executions of this code snippet.

2.2 Methodology

Ideally, we would like to recover precisely runtime message
sequences from existing logs, as annotated in Figure 3. Each
log instance is mapped to one static message (or a grouped
static message). The log instances from the same run are
grouped together in order. In reality, we perform source code
analysis and log analysis together to infer such message
sequences. We analyze how static messages are handled and
logged. Runtime log instances can then be mapped to static
messages with static analysis information. We group the logs
from the same run together by analyzing the relations among
the logged variable values (ID variable values), based on
static dependence analysis and their runtime values. Section 3
gives the technical details.

The recovered message sequences are then mutated for
further testing. We focus on the orderings for pairs of access-
related static messages < P,S >, where P and S may happen
in parallel. As discussed in Section 1, message sequences
involving more than two messages are tested by considering
multiple such message pairs together. Some message pairs
follow a strict happen-before order, e.g., <(1),(2)>, <(2),(3)>,
and <(2),(5)>. The underlying order cannot be mutated.
Our two observations stated in Section 1 provide the basic
guidelines to select a message ordering P ↣ S as follows:

Rule 1: Runtime log instances Pi and Si must log all
access-related ID variables, and
Rule 2: The order Pi ↣ Si has not been exercised.

In both rules, Pi and Si are runtime instances of P
and S with matching values of ID variables.

Observation 1 leads to Rule 1. Distributed systems
frequently use the values of ID variables as indexes to access
shared resources. Thus, messages logging completely unre-
lated values of ID variables are unlikely to access commonly
shared objects (i.e., not access-related), and unlikely to expose
errors. Rule 2 discards those message orderings that have
already been exercised, according to Observation 2.

In our example, the message pairs <(3), (5)> and <(8,9),5>
may happen in parallel. All messages record the values of
related ID variables (containerID and taskAttemptID)
in their logs (Rule 1). The message orderings (3) ↣ (5), 5 ↣
(3) and (5) ↣ (8,9) have already been tested, according to the
log information. Hence, we will select the order (8,9) ↣ (5)
for further testing. The error can then be triggered.

3 THE CLOUDRAID APPROACH

We have designed and implemented CLOUDRAID in
WALA [16] via a series of sub-analyses (Figure 4):

https://issues.apache.org/jira/browse/MAPREDUCE-3656
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// Thread T_0 in AM
1 public void ContainerLauncherImpl.serviceStart() {
2 Runnable t = createEventProcessor(new ContainerLaucherEvent());
3 this.launcherPool.execute(t); // Message (1)
4 }
5 public void ContainerLauncherImpl.createEventProcessor(ContainerLauncherEvent event) {
6 return new EventProcessor(event);
7 }

// Thread T_1 in AM, handler of Message(1)
8 public void EventProcessor.run() {
9 LOG.info("Launching " + this.taskAttemptID);
10 ContainerManagementProtocolPBClientImpl proxy = getCMProxy(this.containerMgrAddress);
11 StartContainerResponse response = proxy.startContainer(new StartConReq(...)); // Message (2)
12 this.dispatcher.handle(new TaskAttemptContainerLaunchedEvent(this.taskAttemptID...)); // Message (5)
13 }

// Thread T_2 in NM, handler of Message(2)
14 public StartConRes ContainerManagerImpl.startContainer(StartConReq req) {
15 ID containerID = req.getConLauContext().getConId();
16 LOG.info("Start request for " + containerID);
17 ... // create thread T_3 via thread pool, message(3)
18 }

// Thread T_6 in AM, handler of Message(5) and Message(9) (dispatched by the event dispatcher)
19 public void EventHandler.handle(TaskEvent event){
20 TaskTAttemptEvent ev = (TaskTAttemptEvent) event;
21 if (this.oldState== ASSIGNED&& ev.getType().equals(TA_CONTAINER_LAUNCHED)) {
22 // Handle message (5), callback1
23 TaskAttempt attempt = ev.getTaskAttempt();
24 LOG.info("TaskAttempt: ["+attempt.attemptId+"] using containerId: ["+attempt.containerID);
25 . . . // Update task status
26 } else if (this.oldState== ASSIGNED && ev.getType().equals(TA_CONTAINER_UPDATE)) {
27 // Handle message (9), callback2
28 . . .
29 } // Other cases
30 }

// Thread T_3 in NM, handler of Message(3)
31 public void LocalizerRunner.run() {
32 nmPrivateCTokensPath = getLocalPathForWrite(this.localizerId);
33 LOG.info("Writing credentials to the nmPrivate file " + nmPrivateCTokensPath.toString());
34 . . . // create TASK via Shell script, message (7)
35 }

// Thread T_5 in AM, handler of Message(8)
36 public void TaskAttemptListenerImpl.statusUpdate(TaskAttemptID taskAttemptID) {
37 LOG.info("Status update from " + taskAttemptID);
38 this.dispatcher.handle(new TaskAttemptStatusUpdateEvent(. . .)); // Message (9)
39 }

Fig. 2. Code snippet for implementing the scenario illustrated in Figure 1.

1 Launching attempt_..._0001_m_000009_0 // Message (1)
2 Start request for container_1514878932605_0001_01_000011 // Message (2)
3 Writing credentials to the nmPrivate file
$HADOOP_HOME/nm-local-dir/nmPrivate/container_1514878932605_0001_01_000011.tokens // Message (3)
4 TaskAttempt: [attempt_..._0001_m_000009_0] using containerId: [container_1514878932605_0001_01_000011] //Message (5)
5 Status update from attempt_1514878932605_0001_m_000009_0 // Message (8), immediately followed by (9)

6 Launching attempt_..._0002_m_000007_0 // Message (1)
7 Start request for container_1514878932605_0002_01_000009 // Message (2)
8 TaskAttempt: [attempt_..._0002_m_000007_0] using containerId: [container_1514878932605_0002_01_000009] //Message (5)
9 Writing credentials to the nmPrivate file
$HADOOP_HOME/nm-local-dir/nmPrivate/container_1514878932605_0002_01_000009.tokens // Message (3)
10 Status update from attempt_1514878932605_0002_m_000007_0 // Message (8), immediately followed by (9)

Fig. 3. Simplified runtime logs for two different executions of the code snippet in Figure 2.

● Communication Analysis analyzes statically how static
messages are handled and logged. Each static message
is annotated with a logging expression. Proceeding
similarly as in [17], [18], we represent logging expres-
sions of static messages as regular expressions.

● Log Analysis uses the logging expressions to map each
runtime log instance to a static message.

● ID Analysis analyzes the relations among the logged
values, according to the dependences between logged
variables and their run time values (from the log

analysis). The messages in the same run can then
be distinguished from those in the other runs and
grouped together (as discussed in Section 2).

● Log Enhancer is an optional component for introducing
automatically new logging statements into the system
being tested to improve log quality.

● HB Analysis analyzes statically the happen-before
order among the static messages.

● Message Pair Analysis explores message orderings to
perform further tests, based on the results obtained
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Fig. 4. Architecture of CLOUDRAID.

by the HB and ID analyses.
● Trigger will instrument the source code to exercise the

selected message orderings (to expose bugs).

3.1 Communication Analysis
In CLOUDRAID, communication analysis is the basis for all
subsequent analyses. Each static message is represented as a
triple < C,F,L >, where C is the client site for sending the
message, F is the corresponding message handler, and L is
its logging expression. Table 1 lists the static messages in our
motivating example (with a client site identified by its source
line number).

Below we first describe how to handle three common
patterns used for static messages, thread creation, RPC, and
event dispatch, and then summarize our analysis.

3.1.1 Thread Creation
The client site C is a call site to one of the two methods:
t.start() and ThreadPoolExecutor.execute(t),
where t is a Runnable or Thread object. The message handler
F is the run() method of the thread object referenced by
t. To locate the message handler F , we slice the program
backwards to find the object that t points to. Instead of using
a sophisticated pointer analysis [19], [20], [21], [22], we found
it sufficient to simply follow the def-use chains, since the
thread object is often created right before its execution.

In Figure 2, the call site this.launcherPool.execu-
te(t) (line 3) is the client to start a thread. Slicing t
backwards, we can reach the object created at line 6
(new EventProcessor). Hence, the message handler F
is EventProcessor.run (line 8). Static message (1) is thus
represented as <3, EventProcessor.run, L>, where 3
is the line number and L is the logging expression to be
analyzed.

3.1.2 RPC
RPC allows users to call a remote procedure in the same
way as calling a local function. The client site C is a local
call site, and the message handler F is the invoked remote
procedure. In common practices (e.g., google protobuf [23]),
RPC is realized via a client class and a corresponding server
class, with both implementing the same interface. To identify
RPC, we require the user to specify the common interface
implemented by RPC client classes and server classes.

Figure 5 shows how to specify RPC and event messages
for our motivating example. In common practices, RPC

<RPC>
<Interface>ContainerManager.BlockingInterface</Interface>
</RPC>

<Event>
<Client>Dispatcher.handle

<Handler>Callback1</Handler>
<Handler>Callback2</Handler>

</Client>
</Event>

Fig. 5. Specifying RPC and event messages for the code in Figure 2.

client methods serialize an object, which will then be de-
serialized by their corresponding server methods. Hence,
we distinguish RPC client classes from RPC server classes
by checking whether their implemented interface methods
serialize/de-serialize a formal parameter or not. A RPC
server class can then be matched with its corresponding
RPC client class by checking their public APIs. We recognize
automatically classes that wrap RPC client classes using the
delegation design pattern [24]. Thus, given a RPC client site,
we can find easily its RPC server class and the corresponding
remote procedure to handle this message.

In Figure 2, class ContainerManagementProtocol-
PBClientImpl is a RPC client class. The call to
method proxy.StartContainer (line 11) is the client
site of RPC. Its corresponding RPC server is identified
as ContainerManagerImpl. Hence, the method han-
dler F is ContainerManagerImpl.startContainer
(line 14). Static message (2) is identified as <11,
ContainerManagerImpl.startContainer, L>.

3.1.3 Event Dispatch
The client site C is a call site for enqueuing an event and the
message handler F is the method for handling the dispatched
event. We abstract away the complicated implementation
details of the asynchronous event dispatch mechanism. Here,
we require the user to specify the methods for enqueuing
and handling an event.

Figure 5 gives the specification for event messages, where
client is the method for enqueuing an event and Handler
represents its corresponding handlers. The client method
may invoke different handlers (using callback functions)
for distinct types of events, resulting in distinct static
messages. Hence, we allow users to specify all potential
handlers for an event. As illustrated in Figure 5, a callsite
for Dispatcher.handle is the client site to enqueue an
event, which will be handled by one of the two handlers
Callback1 and Callback2. Thus, at each client side C,
there will be two static messages <C, Callback1, L> and
<C, Callback2, L>. In most cases, we can associate a
unique handler with each client side by checking the type
of the enqueued event, i.e., matching the types of enqueued
events with those of dispatched events (the formal arguments
of the corresponding event handler).

In Figure 2, Dispatcher.handle is the method for en-
queuing an event and EventHandler.handle (line 19) is
the method for handling a dispatched event. In actuality, the
event handler implements a state machine that invokes dif-
ferent callback functions (i.e., callback1 and callback2)
by a case analysis according to the incoming event type
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TABLE 1
Static messages < C,F,L > in the code snippet of Figure 2.

Message Client Site C Message Handler F Logging Expression L

(1) 3 EventProcessor.run Launching attempt_*
(2) 11 ContainerManagerImpl.startContainer Start request for container_*
(3) - LocalizerRunner.run Writing . . . $HADOOP.../container_*.tokens
(5) 12 EventHandler.handle TaskAttempt: [attempt_*] . . . [container_*]
(8) - TaskAttemptListenerImpl.statusUpdate Status update from attempt_*
(9) 38 EventHandler.handle Status update from attempt_*

TABLE 2
Log instances <M,val > for the runtime logs given in Figure 3.

Log Instances Static Message Runtime Values

1 (1) attempt_1514878932605_0001_m_000009_0
2 (2) container_1514878932605_0001_01_000011
3 (3) ...container_1514878932605_0001_01_000011
4 (5) attempt_1514878932605_0001_m_000009_0 ; container_1514878932605_0001_01_000011
5 (8,9) attempt_1514878932605_0001_m_000009_0
6 (1) attempt_1514878932605_0002_m_000007_0
7 (2) container_1514878932605_0002_01_000009
8 (5) attempt_1514878932605_0002_m_000007_0; container_1514878932605_0002_01_000009
9 (3) ...container_1514878932605_0002_01_000009
10 (8,9) attempt_1514878932605_0002_m_000007_0

and the current state (method EventHandler.handle (line
19) in Figure 2). Here, there are two events, message (5)
and message (9). Their client sites are the call sites to
Dispatcher.handle at lines 12 and 38, respectively. By
checking the types of enqueued events, we can deduce
that the two messages are handled by callback1 and
callback2, respectively (lines 22 and 27).

3.1.4 Message Logging

We first locate a log point (e.g., a call to Log.info
or one of its wrappers) for each static message. In the
simple case, a message is logged in the entry block
of its message handler (when the message is received
and handled). For example, the log point for message
(1) (<3, EventProcessor.run, L>) is line 9, the log
point for message (2) (<11, ContainerManagerImpl.sta-
rt-Container, L>) is line 16, and the log point for message
(5) (<12, callback1, L>) is line 22. Hence, we search the
entry block of the message handler F and the entry blocks
of these methods invoked in the entry block of F , for a log
point. If there exists multiple log points for a static message,
we group them together as one single log point.

However, there is no log point in its handler for message
(9). In this case, we will search for a log point at the client
site C, i.e., in the basic block containing C. Hence, line 37
is regarded as the log point of message (9). The messages
that share the same log point are grouped together. In our
example, messages (8) and (9) are grouped together.

The message logging expression at each log point can then
be extracted. Following previous work [17], [18], we represent
a logging expression in terms of a regular expression. We
analyze the logging statement at each log point and the
tostring method of a logged variable to extract statically
the constant strings in the log message. The runtime values of
a logged variable are denoted as *. Table 1 gives the regular
expressions for all the logging expressions in the code snippet
shown in Figure 2.

3.1.5 Discussion

Our communication analysis has been designed to require
minimal user specification. For RPC, we require the user to
specify the RPC interfaces implemented. For event dispatch,
we require the user to specify the event enqueue method
and the event handlers for different types of events. The
communication analysis can then analyze automatically each
message client site, identify its corresponding handler, and
locate the right log point to extract its logging expression. Its
precision can be further improved if the user can provide
detailed annotations to specify the client site, the message
handler, and the logging expression for each message.
Alternatively, we could obtain such precise information
via instrumentation and profiling. For the six different
distributed systems studied (Section 4), our communication
analysis can correctly extract the logging expressions for the
majority of messages without any loss of precision.

3.2 Log Analysis

Log analysis tries to match each runtime log instance with a
message logging expression. A log instance is represented as
a tuple <M,V al >, where M is the static message and V al
records a list of the runtime values of the logged variables.
Table 2 gives the representation of each runtime log instance
in Figure 3. Logs are ordered according to their time stamps,
which are calibrated to a centralized time to compensate for
the time differences on distinct nodes, as in [25].

We adopt the approach in [17] to match each runtime log
instance with a static message logging expression efficiently.
A reverse index is built as a hash for each logging expression,
which can be used to calculate quickly a matching score for
each log instance. The higher the score, the more likely it is a
match. For each log instance, we select 10 message logging
expressions with the highest scores and then parse each log
instance according to the 10 logging expressions in order to
find an exact match. For each log instance, we also record the
runtime values of its logged variables, as shown in Table 2.
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1 //client
2 public void submitApplication(AppId appId){
3 appContext.setApplicationId(appId);
4 request.setApplicationSubmissionContext(appContext);
5 rmClient.submitApplication(request);
6 }
7 //server
8 public SubmitApplicationResponse submitApplication(
9 SubmitAppRequest request){
10 Application submissionContext = request.getContext();
11 ApplicationId appId = submissionContext.getAppId();
12 ...
13 LOG.info("Application" + appId + " is submitted");
14 ...
15 return RecordFactory.newRecordInstance();
16 }

Fig. 6. Identifying ID Variables for a code snippet from Hadoop2/Yarn.

3.3 ID Analysis
ID analysis organizes all related log instances into a hierarchi-
cal structure, based on the ID Values, i.e., runtime values of
ID variables. The hierarchical structure captures the relations
among tasks and their sub-tasks. In distributed systems, the
values of ID variables are commonly used to distinguish
distinct requests and tasks. These variables are wrapped in
messages and propagated to different nodes and threads.
Therefore, we regard a variable as an ID variable if it is
propagated from a message and printed in logs.
Definition 1. A variable is referred to as an ID variable if (1) it

is accessible from a formal argument of a message handler
or a field of a runnable object (via direct or indirect field
dereferencing) and (2) it is printed in logs.

Figure 6 gives an example from Hadoop2/Yarn, where
all variables propagated from messages are highlighted
in blue. Here, submitApplication sets appID as a
field of a request object, request (lines 3 and 4), and
then sends this RPC request at line 5. The RPC handler
submitApplication (lines 8 - 16) decomposes request
(its formal parameter) to obtain the stored appID (lines 10
and 11), which is then printed in log (line 13). According to
Definition 1, request is identified as an ID variable.

It is difficult to analyze precisely the propagation of ID
variables statically, especially when complicated pointer and
field dereferencing operations are involved. So we build
statically an initial set of ID variables and then use their
runtime values to group the log instances with the same
ID value together. These variables, which are propagated
from formal arguments of message handlers or runnable
object fields to a log point (via direct assignments or field
dereferences), are included in the initial set of ID variables.
Definition 2. A variable with the same run-time value as an

existing ID variable is an ID variable.

In line 33 of our example (Figure 2), we can-
not determine statically whether the logged variable
nmPrivateCTokensPath is propagated from a formal
argument or not, since it is not included in the initial set of
ID variables. However, the log can still be grouped according
to its runtime value, which can be matched with an existing
ID value (containerID logged at line 16), by Definition 2.
Definition 3. ID value V1 and ID value V2 are said to be

access-related if there exists a log instance < M,V al >,
such that both V1 ∈ V al and V2 ∈ V al hold. Let L be the

set of log instances of a static message M . V1 is said to
be a sub-ID of V2 if for any log instance <M,V al > ∈ L,
V1 ∈ V al Ô⇒ V2 ∈ V al, but not conversely.

The log instances with the same ID value are grouped
together to perform a task. A task is indexed with one ID
value and can be further divided into sub-tasks. Two tasks
are access-related if their ID values are access-related. One
task is a sub-task of another task if its ID variable is a sub-ID
of the ID variable of another task.

For our motivating example, the log instances in Table 2
are organized into two groups. Each group consists of two
access-related tasks (Definition 3), indexed by the runtime
values attempt_*, and container_*, respectively.

3.4 Log Enhancement

We rely on a new log enhancing technique to improve further
the effectiveness of CLOUDRAID. Unlike previous work [26],
[27], [28], [29], which focuses on introducing new logs for
error-prone code to facilitate debugging, we propose to
enrich logging information in order to achieve more precise
message recovery and more thorough testing. There are two
questions to be addressed:

● Where to log, i.e., where to place logging statements?
● What to log, i.e., which variables need to be logged?

3.4.1 Where to Log?
CLOUDRAID relies on runtime logs to recover message
events. All the recovered message events are organized into
groups, according to the runtime values of ID variables in
their corresponding logs. We adhere to the guideline:

A static message < C,F > should be logged if there
exists a variable V in F such that V is an ID variable.

As a result, the new logs introduced will help
CLOUDRAID uncover successfully more message events and
group them accordingly. To analyze statically whether a
variable is access-related to an existing ID variable or not, we
have developed a type-based analysis as follows:
Definition 4. A type T is said to be an ID-type if there exists

an ID variable V with type T . A variable with an ID-type
is regarded as an ID variable.

In this simple type analysis, we skip the four base types,
Integer, String, File, and Byte, to reduce false posi-
tives. Hence, we introduce logging statements for certain
static messages if they have no log points and their corre-
sponding message handlers contain local ID variables.

Figure 7 gives an example. Here, signalToContainer
is an RPC message handler and containerId is a lo-
cal ID variable with an ID-type ContainerId. Thus,
containerId is an ID variable. As a result, a logging
statement is introduced after line 3 (Definition 4). On the
other hand, there is no local ID variable in the event handler
SignalContainerTransition#transition. Thus, we
will not introduce logs for that message. Intuitively, the
local ID variable in the message handler suggests that the
handler performs some complex operation, which is likely
to introduce errors and needs to be logged.
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1 //RPC
2 public void signalToContainer(

SignalContainerRequest request){
3 ContainerId containerId = request.getContainerId();
+ Log.info("signalToContainer Line 3" + containerID);

// Send event
4 this.rmContext.handle(

new RMNodeSignalContainerEvent(...));
5 . . .
6 }

7 //Event handled by Callback
8 public void SignalContainerTransition#transition(

RMNodeEvent event){
9 rmNode.containerToSignal.add(event.getSignalRequest());
10 }

Fig. 7. The code snippet that misses a log statement.

3.4.2 What to Log?
Each logging statement prints a unique line number so that
its runtime log instance can be mapped easily to a logging
statement. The local ID variables are also printed in order
to group their log instances accordingly. To avoid printing
unnecessary ID variables, we apply the following rule:

A local ID variable V is printed in logs if there is no
other ID variable V ′ such that (1) V ′ is a sub-ID of V
or (2) V ′ is both printed in logs and access-related to
V .

Thus, a logged ID variable can help CLOUDRAID organize
log instances into groups. A simple type-based analysis is
employed to determine statically whether or not a variable
is a sub-ID of or access-related to another variable.

Definition 5. Let a variable V1 (V2) be of type T1 (T2). Let
a variable V ′1 (V ′2 ) be of type T1 (T2). Then V ′1 is access-
related to V ′2 if V1 and V2 are access-related. In addition,
V ′1 is a sub-ID of V ′2 if V1 is a sub-ID of V2.

3.5 HB Analysis

HB analysis infers the happen-before relation among all the
static messages. We consider two representative scenarios.
Suppose there are two static messages P ∶< CP , FP , LP >

and S ∶< CS , FS , LS >. If CS resides in method FP , then P
happens before S. If CP dominates CS and CP is a RPC
client site, then P happens before S. We then compute the
transitive happen-before relation for all static messages.

3.6 Message Pair Analysis

Message pair analysis selects the order P ↣ S for two
messages P and S for further testing. If P has already
happened before S or S can never happen before P , then
P ↣ S either always holds or is infeasible, and should thus
not be selected. We check whether P and S are related or not
and whether P ↣ S has been exercised or not by comparing
their log instances in a pair-wise manner.

Consider two log instances Pi ∶< P,− > and Si ∶< S,− >. If
Pi and Si belong to the same task or two related tasks, then
P and S are related. If Pi and Si are related and Pi is logged
before Si, then P ↣ S has already been tested. Therefore,
P ↣ S will be selected only when (1) P and S are related
and (2) the order has not been exercised yet.

Fig. 8. Triggering order P ↣ S by flipping S ↣ P .

3.7 Error Triggering and Reporting
For a selected message order P ↣ S, CLOUDRAID’s trigger
tries to exercise the order by instrumenting the system in
such a way that a dynamic instance Si can wait until Pi has
been handled. We introduce a prologue and epilogue for
both S and P . For a message, its prologue is instrumented
before it is handled and its epilogue is introduced after it is
handled. For an RPC or thread creation, the prologue and
epilogue are introduced at the entry and exit of its message
handler, respectively. For an event dispatch, the prologue
is inserted at the client site before it is enqueued and the
epilogue is inserted at the exit of its message handler. Note
that adding the prologue at the entry of the message handler
will block execution, so that no event can be dequeued and
the event queue will soon be occupied.

3.7.1 Triggering Errors
3.7.1.1 Triggering One Message Order Pair: As

shown in Figure 8, we maintain a state machine at run
time. Initially, neither P nor S is executed. The start state
is S0. When executing S, the prologue of S sends an Sstart
event to our runtime. The state machine is updated to state
S1, and S will sleep for a time interval T + δ, waiting for
P to be executed. T is set to be the largest gap between the
related instances of Pi and Si in previous executions i. We
introduce a δ to compensate for the delays caused by our
instrumented code and for handling message P . As a result,
P will have a good chance to be handled while S is waiting.
When P starts to execute, the prologue of P sends a Pstart
event, causing the state machine to advance to S2. After P is
done, the epilogue of P sends a Pend event, reaching state S3.
After waiting for T + δ, the prologue of S sends a Timeout
event and then continues its execution. If P has already
finished its execution (reaching state S3), the message order
can be successfully exercised. The state machine reaches the
final state S4 when S finishes its execution. Otherwise, if
P does not arrive in time (captured by state S1) or has not
finished its execution (captured by state S2), the runtime
state will be reset to its initial state, suggesting that we have
not successfully triggered the order as desired.

3.7.1.2 Triggering Multiple Message Order Pairs:
CLOUDRAID triggers a message ordering involving three or
more messages by flipping the order of multiple message
pairs together as described in Section 1. For example, we can
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Fig. 9. State machine for three messages.

flip the order of < S,P > and < P,Q > to trigger Q↣ P ↣ S.
Figure 9 gives the corresponding state machine. S will wait
for P to be executed (from state S1), which will wait for Q
(from state S2). The timeout internal for S is set to be the
largest gap between S and Q, augmented again by a δ to
compensate for the delays caused by instrumented code and
for handling messages P and Q.

We use a python script to generate automatically a state
machine as needed. Given the number of messages in a
message ordering, the script will automatically generate a
state machine and all possible message orderings.

3.7.2 Reporting Errors

CLOUDRAID reports an error in three cases: (1) system crash,
(2) job hang or fail, and (3) uncommon errors in the log file.
Uncommon errors are exceptions related to memory errors,
e.g., null pointer exceptions and out-of-bounds exceptions,
and exceptions that have been clarified as bugs before, e.g.,
InvalidStateTransitionException in YARN. Common errors
such as network delay errors are elided.

Currently, we do not report silent errors which lead
to unexpected behaviors that are difficult to detect, e.g.,
silent data corruptions [30]. How to develop test oracles
to automatically detect such unexpected behaviors is an
important topic worth a separate investigation.

4 EVALUATION

We have applied CLOUDRAID to six representative real-
world distributed systems: Apache Hadoop2/Yarn (a dis-
tributed computing framework), HDFS (a distributed file
system), HBase (distributed key-value stores), Cassandra
(distributed key-value stores), Flink (distributed data stream
processing) and Zookeeper (distributed centralized service).

TABLE 3
Six representative systems under testing.

System Specification (#LOC) Workload
Hadoop2/Yarn 48 wordcount + kill

HDFS 18 putfile + reboot
HBase 25 write + node crash

Cassandra 17 write
Flink 20 wordcount + cancel

Zookeeper 18 write + node crash

Table 3 lists these six systems. Column 2 gives the number
of lines (#LOC) required in a specification in order to adapt
each system to a new one. Our communication analysis
requires users to manually specify communication patterns
for RPC and event dispatch messages (Section 3.1). On
average, however, this entails only a 25-line specification for
each system. As shown in Figure 5, users are only required to

Fig. 10. Number of static messages (“SM”), SM with logs (“SMLog”), SM
with logs and IDs (“SMLog+ID”), and SM with logs and IDs that have
been executed (”SMLog+ID executed”).

provide the RPC interfaces and methods for dispatching/han-
dling events. CLOUDRAID can then automatically analyze a
system under testing to infer the source locations for sending
and handling each message. In our evaluation, we use six
failure-triggering workloads described in [8] and run the
systems using their default configurations (including default
logging configurations). These are also common workloads,
but errors may be triggered by untimely communication
among the nodes.

Each system runs a workload 20 times to generate
runtime logs. CLOUDRAID then performs its analyses using
these logs. We have experimented with larger sets of logs
(up to 50 runs), but with no noticeable differences observed.
All the experiments are performed on a cluster with three
identical nodes. Each node has a CentOS 6.5 system on an
Intel(R) Xeon(R) E7-4809 processor with 32 GB of memory.

Our evaluation addresses five research questions:

● RQ1. How accurate can CLOUDRAID extract message
sequences from runtime logs?

● RQ2. How much can CLOUDRAID improve the over-
all testing efficiency?

● RQ3. How effective is CLOUDRAID in detecting bugs,
especially new bugs?

● RQ4. Is our log enhancing technique beneficial?
● RQ5. How does CLOUDRAID compare with random

message reordering in their bug-finding abilities?

4.1 RQ1: Accuracy

Figure 10 summarizes all the static messages identified in the
six systems. There are 393 static messages in Hadoop2/Yarn
and 82 static messages in HBase. Our communication anal-
ysis can successfully analyze the logging expressions for
more than 60% of static messages in all the six systems,
except for HDFS (46.8%). We have manually inspected all the
static messages that have no logging expressions. Their logs
are often optimized away for performance reasons. HDFS
frequently reads file systems without logging. Therefore, a
large percentage of static messages in HDFS do not have any
logging expression.

ID analysis can successfully find an ID value in 84.8% of
the static messages for Hadoop2/Yarn and in 52.5% of the
static messages for HBase. Thus, ID values can effectively
distinguish the log instances in different runs. However,
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TABLE 4
Statistics of runtime logs. "#Log Instances" is the number of different
types of runtime log instances. "#Static messages" is the number of

messages covered by runtime logs.

System #Log Instances #Static Messages
SM SMID SM + NonSM SM SMID

Hadoop2/Yarn 11519 8539 15813 122 67
HDFS 7777 7750 8073 22 9
HBase 9663 5753 10614 59 18

Cassandra 4417 104 14263 29 4
Zookeeper 3468 20 3524 19 2

Flink 1079 40 3923 54 15

only 39.2% of the static messages in HDFS and 22.1% of
the static messages in Cassandra have ID values. HDFS
invokes frequently RPC to set/get the state of its master
node without ID values. Cassandra mainly prints logs at
system startup. For live systems, we process logs for user
requests. We analyze further the message logs without ID
values: 79.4% print variables such as size, 17.2% are daemon
processes printing messages such as service start/stop, and
the remaining 3.4% are due to bad log quality.

Table 4 gives the number of runtime log instances
(Columns 2-4) and the number of static messages covered by
runtime logs (Columns 5 and 6). Let us compare Columns
2 and 4. In all the cases except for Cassandra and Flink, the
majority of runtime log instances have recorded message
events (72.8% for Hadoop2/Yarn, 96.3% for HDFS, 91.0% for
HBase and 98.4% for Zookeeper). By comparing Columns
2 and 3, we find that most message log instances have also
recorded ID values (74.1% for Hadoop2, 99.6% for HDFS and
60% for HBase). Therefore, these systems provide valuable
information for CLOUDRAID to recover accurately the run-
time message sequences. Note that Cassandra, Zookeeper
and Flink have logged fewer messages and rarely printed
ID values in logs. This is because that CLOUDRAID reasons
about request logs while these three systems print most of
their logs during their system startup processes. Thus, only
1.4% of the runtime log instances have recorded message
events with ID values (Figure 10).

The runtime log instances cover about 27.6% of static
messages (Column 6 in Table 2 and Figure 10). The other
uncovered messages may need to be exercised under a dis-
tinct workload (e.g., by executing an “alter table” command
for HBase) or a different configuration (e.g., by executing a
distinct resource scheduling model in Yarn) or are simply
difficult to reach as they are in error handling modules.

Discussion. The accuracy of message sequences extracted
by CLOUDRAID varies across the six systems tested. Overall,
Hadoop2/Yarn provides the most accurate information in
its logs. CLOUDRAID can analyze and process 67.4% of its
runtime logs, making it possible to exercise more static
messages in Hadoop2/Yarn than the other five systems
(Column 6 in Table 4). On the other hand, Cassandra,
Zookeeper and Flink rarely log ID values. As a result,
CLOUDRAID can only analyze about 1.4% of their runtime
log instances, and consequently, cannot accurately recover
their runtime message sequences from these logs.

4.2 RQ2: Efficiency
Table 5 reports the times in testing the latest versions of
six systems under CLOUDRAID. Column 2 gives the time

TABLE 5
Analysis and testing times of CLOUDRAID.

System Profiling (secs) Analysis (secs) Trigger (secs)
Hadoop2/Yarn 648.0 131.3 6990.2

HDFS 646.0 60.0 828.3
HBase 1309.0 63.3 1368.0

Cassandra 263.1 112.3 60.3
Zookeeper 466.0 60.6 50.8

Flink 721.3 124.209 1813.0

TABLE 6
Message orderings pruned by each analysis. Total is the number of
messages orderings. HB is the percentage pruned by HB analysis.

Order is the percentage already exercised. ID is the percentage where
messages do not log related ID values.

System Total % Pruned
HB Order ID All

Hadoop2/Yarn 4489 1.0% 11.1% 81.5% 93.6%
HDFS 81 2.5% 45.7% 51.9% 85.2%
HBase 324 2.5% 57.7% 34.3% 94.4%

Cassandra 16 0.0% 75.0% 0.0% 75.0%
Zookeeper 4 0% 75.0% 0.0% 75.0%

Flink 225 0.1% 12.1% 65.3% 77.5%

spent on profiling each system, i.e., running each workload
20 times. In practice, we can obtain logs from live systems
without profiling. Column 3 gives the total analysis time,
including the times on analyzing the source code and parsing
all runtime logs from the 20 runs. Column 4 gives the testing
time for triggering all selected orderings. Here, we consider
message orderings with two messages only and will examine
more messages in Section 4.3.3.

CLOUDRAID is very efficient. It finishes its analyses in
about 2 minutes in each case (Column 3). In the testing phase
(Column 4), Hadoop2/Yarn consumes 6990.2 seconds (1.94
hours). As for Cassandra and Zookeeper, each takes less
than 1 minute, since CLOUDRAID can extract only limited
information from their runtime logs (Table 4), resulting in
only 4 and 2 message orderings to be tested, respectively.

Table 6 shows how CLOUDRAID achieves efficiency by
pruning message orderings using different analyses. In
Column 2, we have already filtered out the static messages
that are not logged with ID values. Otherwise, the number of
message orderings for Hadoop2/Yarn would reach 154,449.
Overall, CLOUDRAID has successfully pruned 93.6% of the
message orderings for Hadoop2/Yarn and 94.4% for HBase
(Column 6). Note that HB analysis has pruned only few
message orders, as it is difficult to analyze precisely the
happen-before order statically in these complex systems.
CLOUDRAID prunes efficiently most message orderings by
skipping those that have already been exercised (Column 4)
and those between unrelated messages (Column 5). We have
randomly tested 50 pruned message orderings but failed to
find any new bugs. This confirms our observation and as-
sumption: messages orderings pruned away by CLOUDRAID
are unlikely to expose errors.

When CLOUDRAID tries to exercise all message orderings,
we find that only 23% of them are triggered. For the message
orderings not exercised, 82.1% of them do have happen-
before relations but our HB analysis fails to analyze the
happen-before order due to unrecognized control or data
dependencies. Hence, a more sophisticated may-happen-in-
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parallel analysis [31] can further improve efficiency. The
remaining 17.9 % are attributed to the fact that our current
workloads cannot expose their message orderings.

Discussion CLOUDRAID improves drastically its effi-
ciency by pruning away message orderings that are unlikely
to expose errors. However, CLOUDRAID trades soundness
for efficiency as we cannot guarantee that all the pruned
message ordering will never trigger any error.

4.3 RQ3: Effectiveness

We now show that CLOUDRAID is effective in detecting bugs,
especially new bugs, in complex systems.

4.3.1 Finding Existing Bugs

We evaluate CLOUDRAID using the TaxDC Benchmark
suite [8] (with one bug per benchmark). The 20 benchmarks
in Table 7 are selected because we can manually trigger a
failure by changing the order of a message pair in each of
these benchmarks. We skip a benchmark in TaxDC if we
cannot reproduce the bug in the benchmark manually or if
the bug involves timely hardware failure.

TABLE 7
Bugs detected in TaxDC [8].

Category Bugs

Detected

MR-3656 MR-3274 MR-4637 MR-3596
MR-2995 MR-4751 MR-4607 MR-5358
CA-5631 HBase-4539 HBase-6070 HBase-5816
MR-5009 HBase-6537 HBase-8940

Not Detected MR-3006 MR-4099 MR-5009 MR-3721
MR-4842 HBase-10257

CLOUDRAID detects 15 out of the 20 bugs. There are five
bugs missed: MR-3006, MR-4099, MR-3721, MR-4842, and
HBase-10257. MR-3006 and MR-4099 can only be triggered
when instrumenting delays in the middle of their message
handlers, which cannot be detected by CLOUDRAID. As
for MR-3721 and MR-4842, a key thread message event
is not logged. Our log enhancer cannot infer the local ID
variables in the corresponding handler and fails to introduce
extra logs for the message. Finally, HBase-12507 involves
two messages in two subsystems, one in HBase and one in
the underlying system Zookeeper. Currently, CLOUDRAID
detects bugs caused by messages in one system only.

4.3.2 Detecting New Bugs

We evaluate the ability of CLOUDRAID in detecting new bugs
using the six systems given in Table 3. For each system, we
select 10 different versions (including the latest, the oldest
and eight randomly selected versions). For each system, we
apply CLOUDRAID to each version. The same bug appearing
in different versions is reported as one bug.

CLOUDRAID has successfully found 31 bugs, comprising
22 already tracked ones and 9 new ones. We have reached
this conclusion by using the exceptions raised to search in the
bug repositories of these systems. Most of the bugs detected
by CLOUDRAID are message order violations (27 out of 31),
as expected. CLOUDRAID also detects 4 atomicity violations,
which are exposed by concurrent executions of some message
handlers caused by message reorderings.

TABLE 8
Bugs detected in the six systems listed in Table 3.

System #Bugs: new/all
Order Violation Atomicity Violation Total

Hadoop2/Yarn 6/19 1/2 7/21
HDFS 1/3 0/0 0/3
HBase 1/2 0/2 1/4

Cassandra 0/0 0/0 0/0
Zookeeper 0/0 0/0 0/0

Flink 0/2 0/0 0/0
Total 8/27 1/4 9/31

CLOUDRAID detects the largest number of bugs, i.e., 19
out of 31 in Hadoop2/Yarn but none in Cassandra and
Zookeeper (Table 8). Cassandra and Zookeeper are the two
systems with the least amount of log information available
(Figure 2 and Table 2). The limited log information has largely
restricted CLOUDRAID’s ability in detecting bugs.

TABLE 9
New bugs detected in the six systems in Table 3. All the bugs have been

confirmed by the original developers, with three already fixed.

Bug ID Bug Type Status Patched? Symptom

YARN-6948 Order Fixed 3 Attempt fail
YARN-6949 Order Unresolved 7 Wrong state
YARN-7176 Atomicity Unresolved 3 Cluster down
YARN-7563 Order Unresolved 3 Resource leak
YARN-7663 Order Fixed 3 Job fail
YARN-7726 Order Unresolved 3 Wrong state
YARN-7786 Order Fixed 3 Null Pointer
HBase-19004 Order Unresolved 7 Data loss
HDFS-14428 Order Unresolved 7 Shutdown abort

Table 9 lists the 9 new bugs detected by CLOUDRAID,
with one of these (HDFS-14428) detected thanks to our log
enhancing technique. These new bugs may lead to serious
failures such as cluster down (YARN-7176) and data loss
(HBase-19004). By examining how CLOUDRAID triggers a
bug, we can easily find its root cause and provide a patch.
We have provided patches for six bugs, with three of them
already accepted by their original developers.

Fig. 11. A new atomicity violation detected by CLOUDRAID. The mes-
sages and their handlers triggering the bug are highlighted in red.

Let us examine two new bugs found below.
● YARN-7176. CLOUDRAID detects a new atomicity

violation in Hadoop2/Yarn, as illustrated in Figure 11.
This has been successfully exposed by flipping the normal
execution order SstartAMContainer ↣ PstopAMContainer so that
PstopAMContainer, which sends an UPDATE_APP message, is
handled first. Thus, its message handler FUPDATE_APP executes
concurrently with the handler FstartContainer. As a race con-
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dition is triggered, an ArrayIndexOutBoundsException
is thrown, crashing the Yarn daemon process.
● YARN-7663. In YARN-7663, CLOUDRAID initially trig-

gered an InvalidStateTransitionException error af-
ter reordering the START message with the KILL message.
Hence, in our initial patch, we have simply ignored the
START message if it arrives after the KILL message. One orig-
inal developer accepted our fix by responding with "Ignoring
the START event seems to be appropriate here". However, he also
made another request: "Could you add a unit test of the new
start-after-killed transition logic"? We then prepared our second
patch with a unit test. Interestingly, the unit test triggered
another two bugs (YARN-7726 and YARN-7703), both are
also InvalidStateTransitionException errors in the
state machine implementation of YARN. Note that YARN-
7703, which is similar to YARN-7726, is not also listed
in Table 9. Although the YARN developers have tested
the state machine implementation with a large set of unit
tests, numerous subtle cases remain uncovered. By iterating
over four different versions of our patch (2 months after
we reported the bug), the patch was finally accepted and
submitted to the latest trunk and some previous trunks
(branch-2, branch 2.8, and branch 2.9).

Discussion. The effectiveness of CLOUDRAID largely
relies on the log quality of the system under testing. For sys-
tems with rich log information (Hadoop2/Yarn and HBase),
CLOUDRAID can be rather effective. However, for sys-
tems that provide limited logs (Cassandra and Zookeeper),
CLOUDRAID’s bug-finding ability can be restricted.

4.3.3 Reordering Three Messages

TABLE 10
No new bugs found by reordering three messages.

System #Tests Time (hrs) #New Bugs
Haddop2/Yarn 2161 14.6 0

HDFS 93 1.2 0
HBase 314 6.3 0

Cassandra 16 0.1 0
Zookeeper 0 0 0

Flink 323 3.2 0

Table 10 gives the results of reordering three messages.
By going from two to three messages, CLOUDRAID has
experienced a significant increase in its testing times for
all the six systems (e.g., from 2 hours to 14.6 hours for
Hadoop2/Yarn) but without any benefit in finding new bugs
(Tables 5 and 10). This finding is consistent with a previous
study [8], reporting that few distributed concurrency bugs
are caused by three or more messages. In general, most
concurrent events in distributed systems do not access shared
resources. For example, a MapReduce job is divided into
thousands of concurrent mapping tasks, where each task
communicates only with its own job. Thus, few bugs can
be triggered by considering the orderings for three or more
messages.

4.4 RQ4: Is CLOUDRAID’s Log Enhancer Beneficial?
Figure 12 shows the number of log statements added by our
log enhancer. Our log enhancer fails to introduce new logs
in Cassandra, Flink and Zookeeper since they rarely print ID

Fig. 12. Number of static messages increased by CLOUDRAID’s log
enhancer. ”SMLog+ID” and ”SMLog+ID executed” are from Figure 10
and ”SMLog+ID enhanced” and ”SMLog+ID executed and enhanced”
are their respective versions improved by CLOUDRAID’s log enhancer.

Fig. 13. MR-5009 detected by CLOUDRAID with log enhancement.

variables in their initial logs. Our log enhancer cannot then
effectively identify local ID variables and log points for these
systems. Our log enhancer has introduced a small number
of new logs for the other three systems, Hadoop2, HDFS
and HBase. Thus, the runtime overheads due to introduced
logging statements are negligible.

The new logs introduced help CLOUDRAID detect more
bugs. The four bugs, MR-5009, HBase-6537, HBase-8940 and
HDFS-14428 are detected by CLOUDRAID due to log enhance-
ment. Figure 13 illustrates MR-5009, whose code snippet is
given in Figure 14. Task attempt_1 is committing the result
and the field commit is set accordingly. The client sends a
kill command to AM to abort attempt_1, which is han-
dled by the message handler AttemptKilledTransition
(Figure 14). Next, the AM node will fork another task
attempt_2 to recommit the result. However, the field
commit is not reset to Null after having aborted the
previous attempt. The null test always fails and attempt_2
is killed, leading to job hang.

This bug can be triggered if the kill command
is handled after the commitPending message. Initially,
the message kill is not logged. The log enhancer in-
troduces a logging statement in the message handler
AttemptKilledTransition (Figure 14). This allows
CLOUDRAID to discover and exercise the message order
kill ↣ commitPending. The bug is then triggered. This
bug can be fixed by resetting the field in the message handler,
as shown in lines 7-10 Figure 14.

Discussion. For some systems, our log enhancer can
effectively improve log quality and help detect more bugs,
with negligible runtime overheads. However, for some
systems such as Cassandra, Flink and Zookeeper, the log
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1. private static class AttemptKilledTransition{
2. public void transition(TaskImpl task,TaskEvent event){
3. TaskAttemptId taskAttemptId=event.getTaskAttemptID();
4. task.finishedAttempts.add(taskAttemptId);
5. task.inProgressAttempts.remove(taskAttemptId);
6. //other complex operation
7. + if ((task.commitAttempt != null) &&
8 + (task.commitAttempt == taskAttemptId)) {
9 + task.commitAttempt = null;
10 + }
11 }
12 }

Fig. 14. The code snippet and patch for MR-5009 in Figure 13.

TABLE 11
Bugs found by random message reordering.

System Time (secs) #Known Bugs #New Bugs
YARN 14679 2 0
HDFS 1647.1 0 0

HBASE 3009.6 0 0
Cassandra 119 0 0
Zookeeper 96.5 0 0

Flink 3988.6 0 0

enhancer has little benefits. We can further improve log
quality by specifying more ID variables with base types
manually.

4.5 RQ5: CLOUDRAID vs. Random Reordering

We compare CLOUDRAID with the strategy of randomly
reordering messages. For each system (of its latest version),
we choose to execute two messages in a random order.
Table 11 shows the results, with random ordering being
subject to the same number of runs as CLOUDRAID before.

CLOUDRAID is substantially more effective. With random
reordering, we can find only two known bugs, YARN-7786
and YARN-7563, which are also found by CLOUDRAID, but
no new bugs at all. CLOUDRAID is also significantly faster.
Random reordering can trigger one bug per 3.3 hours, with
an average of 373 runs. In contrast, CLOUDRAID can find
one bug per 0.34 hours with an average of 41.4 runs.

5 RELATED WORK

We review prior work in detecting distributed concurrency
bugs, log analysis, and log enhancement.

5.1 Distributed concurrency bug detection

There is a large body of research on distributed system model
checkers [9], [10], [11], [12], [32]. These checkers intercept
messages in a system at runtime and permute their orderings
exhaustively. While powerful, they suffer from the state-
space explosion problem. Recent tools [9], [12] alleviate this
problem by adopting state reduction techniques, but may
still be unscalable for large state spaces [9].

Liu et al. [33] have recently extended race detection tech-
niques for multi-threaded programs [34], [35], [36], [37], [38],
[39] to detect race conditions in distributed systems. Their
approach instruments memory accesses and communication
events in a system to collect runtime traces at run time. An
offline analysis is performed to analyze the happen-before
relation among the emory accesses, by using a happen-
before model customized to distributed systems. Concurrent

memory accesses that may trigger exceptions are regarded
as harmful data races. A trigger is employed to further verify
the detected race conditions. In [40], its approach mines
logs to recover runtime traces without instrumentation, by
restricting itself to message orderings involving only two
messages. In this paper, we have improved the effectiveness
of this earlier approach with two significant extensions. First,
we introduce a new log enhancement technique, which
allows us to detect bugs that would otherwise be missed.
Second, we are now capable of detecting bugs that manifest
themselves in message orderings involving an arbitrary
number of messages. With these two extensions, we have
provided experimental evidence that our framework can find
more bugs in new applications.

Fault injection techniques [41], [42], [43], [44], [45], [46],
[47], [48], [49] are commonly used to test the resilience of
distributed systems. However, they focus on how to inject
faults at different system states to expose bugs in the fault
handlers. CLOUDRAID can be applied together to detect
fault-related concurrency bugs more effectively.

5.2 Log Analysis

Many research efforts [25], [45], [50], [51], [52], [53], [54], [55],
[56], [57], [58] mine logs to extract various information, in-
cluding temporal invariants [51], [53], user request flow [50],
[52], system architecture [25], and timing information [56],
from distributed systems. The mined information can then
be applied to help with better understanding, monitoring,
and analyzing complicated distributed systems.

Xu et al. [17] mine console logs from a system and apply
machine learning techniques to detect anomaly executions.
Mined information such as logged values and logging
frequencies is visualized to help users diagnose anomaly
behaviors. DISTALYZER [59] compares logs from abnormal
and normal executions to infer the strongest association
between system components and performance. Iprof [18]
extracts request IDs and timing information from logs to
profile request latency. Stitch [60] organizes log instances into
tasks and sub-tasks, by analyzing relations among the logged
ID variables to profile different components in the entire
distributed software stack. In contrast, CLOUDRAID mines
logs to uncover insufficiently exercised message orderings to
detect concurrency bugs effectively.

CRASHTUNER [61] applies a similar log analysis to
infer some system meta-info, e.g., the running nodes and
tasks/resources associated to each node. This tool makes use
of the meta-info to detect crash-recovery bugs, which are
triggered by crashing a node where its associated meta-info is
being accessed. In contrast, CLOUDRAID applies log analysis
to uncover the orderings between communication events for
the purposes of detecting distributed concurrency bugs.

5.3 Log Enhancement

Several log enhancing techniques [26], [27], [28], [29], [62],
[63] exist to help developers locate the root causes in online
systems more effectively (than otherwise). For example,
LogEnhancer [26] uses dependence analysis to find variables
impacting certain conditional branches and adds these
variables in the existing logs. LogAdvisor [27] analyzes
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unlogged exceptions in the source code and introduces extra
logging statements in the exception handlers.

Unlike these earlier log enhancing techniques, our log
enhancer aims to uncover effectively more critical messages
that may lead to concurrency bugs. Therefore, our log
enhancer introduces log statements for unlogged messages
where there exist local ID variables.

6 CONCLUSION

We present CLOUDRAID, a simple yet effective tool for detect-
ing distributed concurrency bugs. CLOUDRAID achieves its
efficiency and effectiveness by analyzing message orderings
that are likely to expose errors from existing logs. Our
evaluation shows that CLOUDRAID is simple to deploy and
effective in detecting bugs. In particular, CLOUDRAID can
test 60 versions of six representative systems in 35 hours,
finding successfully 31 bugs, including 9 new bugs that have
never been reported before.
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