
Generic Sensitivity: Customizing Context-Sensitive Pointer
Analysis for Generics

Haofeng Li
lihaofeng19b@ict.ac.cn

SKLP, Institute of Computing
Technology, CAS, China

University of Chinese Academy of
Sciences, China

Jie Lu
lujie@ict.ac.cn

SKLP, Institute of Computing
Technology, CAS, China

Haining Meng
menghaining@ict.ac.cn

SKLP, Institute of Computing
Technology, CAS, China

University of Chinese Academy of
Sciences, China

Liqing Cao
caoliqing19s@ict.ac.cn

SKLP, Institute of Computing
Technology, CAS, China

University of Chinese Academy of
Sciences, China

Yongheng Huang
huangyongheng20s@ict.ac.cn
SKLP, Institute of Computing

Technology, CAS, China
University of Chinese Academy of

Sciences, China

Lian Li∗†
lianli@ict.ac.cn

SKLP, Institute of Computing
Technology, CAS, China

University of Chinese Academy of
Sciences, China

Lin Gao
gaolin@tianqisoft.cn
TianqiSoft Inc, China

ABSTRACT

Generic programming has been extensively used in object-oriented
programs such as Java. However, existing context-sensitive pointer
analyses perform poorly in analyzing generics. This paper intro-
duces generic sensitivity, a new context customization scheme tar-
geting generics. We design our context customization scheme in
such a way that generic instantiation sites, i.e., locations instan-
tiating generic classes/methods with concrete types, are always
preserved as key context elements. This is realized by augment-
ing contexts with a type variable lookup map, which is efficiently
updated during the analysis in a context-sensitive manner.

We have implemented different variants of generic-sensitive
analysis inWala and experimental results show that the generic
customization scheme can significantly improve performance and
precision of context-sensitive pointer analyses. For instance, generic
context customization significantly improves precision of 1-object-
sensitive analysis, with an average speedup of 1.8×. In addition,
generic context customization enables a 1-object-sensitive analysis
to achieve overall better precision than a 2-object-sensitive analysis,
with an averagely speed up of 12.6 × (62 × for chart).

CCS CONCEPTS

• Theory of computation→ Program analysis.

∗corresponding author: lianli@ict.ac.cn
†Also with TianqiSoft Inc, China.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9413-0/22/11.
https://doi.org/10.1145/3540250.3549122

KEYWORDS

pointer analysis, generic programming, context sensitivity

ACM Reference Format:

Haofeng Li, Jie Lu, Haining Meng, Liqing Cao, Yongheng Huang, Lian
Li, and Lin Gao. 2022. Generic Sensitivity: Customizing Context-Sensitive
Pointer Analysis for Generics. In Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSE ’22), November 14–18, 2022, Singapore, Singapore.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3540250.3549122

1 INTRODUCTION

Pointer analysis statically computes the possible run time values
(abstract memory locations) of pointer variables in a program, and
it provides a foundation for a variety of applications, such as bug
detection [10, 29, 34], compiler optimization [46], security analy-
sis [3, 12, 13, 15], etc. The effectiveness and precision of those client
applications directly depend on the precision of the underlying
pointer analysis results.

There is a rich literature optimizing the efficiency and precision
of pointer analysis [17, 30, 42, 45, 55], and one of the keymechanism
to improve precision is context-sensitivity [31, 37, 38, 40, 41, 43].
Context-sensitive pointer analyses differ values of a pointer vari-
able under different calling contexts, effectively reducing spurious
results introduced by infeasible inter-procedural control flow paths
and drastically improving precision. In general, a context is repre-
sented by a sequence of k context elements, where context elements
can be call-sites (k-call-site-sensitivity), allocation sites of receiver
objects (k-object-sensitivity), or types of receiver objects (k-type-
sensitivity). For object-oriented programs, object-sensitivity is be-
lieved to be better than call-site-sensitivity in achieving precision
and efficiency [37, 38], and type-sensitivity is regarded as a more
efficient, but less precise alternative to object-sensitivity [43].

https://doi.org/10.1145/3540250.3549122
https://doi.org/10.1145/3540250.3549122

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Haofeng Li, Jie Lu, Haining Meng, Liqing Cao, Yongheng Huang, Lian Li, and Lin Gao

Under k-limiting, the most recent k context-elements are picked
to represent a context. For instance, k-object-sensitive pointer anal-
ysis analyzes a method𝑚 with its context [𝑂𝑘 , ...,𝑂1], where 𝑂1 is
a receiver object of𝑚 and 𝑂𝑖+1 is an allocator of 𝑂𝑖 , i.e., a receiver
object of a method allocating 𝑂𝑖 . In practice, k is often limited to 1
or 2 in analyzing large real-world applications [23, 33].

This paper, for the first time, proposes a new context customiza-
tion scheme for generics. Generic programming allows to write
generic algorithms for different data representations using type
variables, and has been widely adopted and used in modern pro-
gramming languages including C++, Java, C#, etc. For instance,
the previous study [8] over a large corpus of open-source projects
demonstrated that generics, since its introduction to Java in 2004,
is one of the most frequently used features in Java. With generics,
we can define classes or methods with type variables as parame-
ters, and later instantiate those classes or methods by giving them
specific actual types.

Our context customization scheme for generics is based on the
observation that generic instantiation sites, i.e., locations instantiat-
ing generic with concrete types, are key context elements. However,
those key context elements are not preserved in existing context-
sensitive analyses, often leading to poor performance and precision.
Hence, we propose generic sensitivity: instead of always picking the
most recent context elements, we keep generic instantiation sites
as part of context and propagate such information within generic
classes and generic methods. This may sound trivial but can be
challenging, since type variables are propagated across generic
classes (e,g., generic classes/objects defined within generic classes)
or generic methods (by calling other generic methods). In our ap-
proach, this challenge is addressed by augmenting contexts with
generic instantiation information, which is efficiently updated dur-
ing the analysis in a context-sensitive manner.

We have implemented our approach in WALA [18] and evalu-
ated it against a set of 18 real-world applications, including the
Dacapo benchmark suite [5] and another 7 popular open-source
applications. Experimental results show that our context customiza-
tion scheme can significantly improve performance and precision
of context-sensitive pointer analyses. For instance, generic sen-
sitivity significantly improves the precision of 1-object-sensitive
analysis, with noticeable performance improvements. In addition,
generic context customization enables a 1-object-sensitive analysis
to achieve overall better precision than a 2-object-sensitive analysis,
with an average speedup of 12.6 × (up to 62 × for chart).

To summarize, the paper makes the following contributions:
• We present generics sensitivity, a new context customization
scheme targeting generics. To the best of our knowledge,
this is the first attempt to optimize context-sensitive pointer
analysis for generics.

• We demonstrate how to apply our context customization
scheme to two mainstream context-sensitive variants: k-
object-sensitivity and k-type-sensitivity.

• We have implemented different variants of generics sensitive
pointer analysis inWala [18] and evaluated our implemen-
tations against a large set of 18 popular real-world applica-
tions, including the Dacapo benchmark suite and 7 popular
open-source applications. Experimental results show that
our generic customization scheme can significantly improve

performance and precision of context-sensitive pointer anal-
yses. For instance, generic context customization enables a
1-object-sensitive to achieve overall better precision than a
2-object-sensitive analysis, with a significant speedup: 12.6
× on average and up to 62 × for chart.

The rest of the paper is organized as follows. Section 2 motivates
our approach with an example and highlights its key challenges.
Section 3 formally describes generic sensitivity and demonstrates
how it can be adapted to object-sensitivity and type-sensitivity. We
evaluate the effectiveness and efficiency of generic sensitivity in
Section 4. Section 5 reviews related work and Section 6 concludes
this paper.

2 MOTIVATION

We first give a brief introduction on context-sensitive pointer anal-
ysis (Section 2.1). Then we illustrate the limitations of existing
context-sensitive pointer analysis in analyzing generics with an ex-
ample (Section 2.2). Finally, we motivate our context customization
scheme and discuss its main challenges (Section 2.3).

2.1 Context Sensitivity

Pointer analysis computes the points-to sets of program variables,
i.e., set of abstract locations that can be pointed to by a variable 𝑣
(denoted as 𝑝𝑡𝑠 (𝑣)). Typically, abstract locations are represented as
allocation sites (instructions allocating objects, e.g., new in Java), de-
noting all dynamic object instancess allocated by the instruction at
run time. In context-sensitive analysis, both variable 𝑣 and abstract
location 𝑜 are qualified with a context, effectively distinguishing
their different dynamic instances. Hence, instead of computing
whether 𝑜 ∈ 𝑝𝑡𝑠 (𝑣) as in context-insensitive analysis, context-
sensitive analysis computes the relation (𝑐𝑜 , 𝑜) ∈ 𝑝𝑡𝑠 (𝑐𝑣, 𝑣), where
𝑐𝑜 and 𝑐𝑣 are the context for abstract location 𝑜 and variable 𝑣 ,
respectively.

Call-site sensitivity, object sensitivity, and type sensitivity are
three main variants of context sensitivity, where call-sites, allo-
cation sites of receiver objects, and types of receiver objects are
considered as context elements, respectively. To ensure termination,
k-limiting is applied to bound the number of context elements to k.
In practice, k is often set to less than 2 for scalability.

Among the above three variants, object sensitivity and type
sensitivity (as a cheaper alternative) are considered to be more
suitable in analyzing object-oriented programs. In particular, object
sensitivity is more precise and efficient than call-site sensitivity
and is considered as the most precise context-sensitivity variant for
Java [6, 27]. In k-object-sensitivity, an object 𝑜0 is cloned multiple
times, each with a different context of length 𝑘−1, referred to as the
heap context. A heap context is in the form of [𝑜𝑘−1, ..., 𝑜1], where
𝑜𝑖 (1 < 𝑖 <= 𝑘 − 1) is an allocator of 𝑜𝑖−1, i.e., 𝑜𝑖−1 is allocated in a
method with 𝑜𝑖 being a receiver object. Thus, method 𝑜0 .𝑚 (with 𝑜0
be a receiver object) will be analyzed context-sensitively multiple
times: for each distinct heap context 𝑐𝑜 , the method is analyzed once
under the method context [𝑐𝑜 , 𝑜0]. In type sensitivity, contexts are
constructed in the same fashion, except that the context element 𝑜𝑖
(in object-sensitivity) is replaced with its type. As a result, multiple
object-sensitive contexts will be merged and analyzed together in
type-sensitive analysis, yielding imprecise results.

Generic Sensitivity: Customizing Context-Sensitive Pointer Analysis for Generics ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

1 public static void main(String [] args) {

2 HashMap <String , A> map1 = new HashMap <>();//O1
3 map1.put("A", new A());//O𝐴
4 Object v1 = map1.get("A");

5 A a = (A) v1;//cast may fail?

6
7 HashMap <String , B> map2 = new HashMap <>();//O2
8 map2.put("B", new B());//O𝐵
9 Object v2 = map2.get("B");

10 B b = (B) v2;//cast may fail?

11 }

12
13 class HashMap <K,V> ... {

14
15 Node <K,V>[] table = new Node [16];//O3
16 public void put(K k, V v, ...) {

17 Node <K,V> n = new Node <>(k, v, ...);//O4
18 table[hash(k)] = n;

19 }

20 public final V get(K k) {

21 Node <K,V> n = table[hash(k)];

22 return n.getValue ();

23 }

24 class Node <M,N> ... {

25 M key;

26 N value;

27 Node(M k, N v, ...) {

28 key = k;

29 value = v;

30 }

31 public final M getKey () {

32 return key;

33 }

34 public final N getValue () {

35 return value;

36 }

37 }

38 }

Figure 1: Simplified code example from java.util.HashMap.

2.2 A Motivating Example

Let us study context-sensitive pointer analysis with an example
in Figure 1. The example uses generic class java.util.HashMap.
Hereafter, we only discuss the two main stream context-sensitive
variants for object-oriented programs: object-sensitivity and type-
sensitivity.

In the main method, there are two HashMap objects: 𝑂1 (line 2)
and 𝑂2 (line 7). Object 𝑂𝐴 is created and put into 𝑂1 at line 3, then
retrieved back via the get method at line 4. Similarly, object 𝑂𝐵 is
created and put into 𝑂2 at line 8, then retrieved back at line 9. As a
result, the two cast operations (line 5 and 10) will never fail.

The simplified code snippet of HashMap is given in lines 13 - 38.
HashMap stores data in table, an array of Node objects (line 15).
The put method creates a Node object and stores it in table (lines

16-19). The get method retrieves the corresponding Node object
from table, then returns its value via the getValue interface (lines
20-23). Note that the Node class (lines 24-38) is implemented as an
inner generic class, and it is instantiated with the type variables (i.e.,
K and V) of its outer class HashMap when creating a Node object.

k-object sensitivity. In 1-object sensitive analysis (abbreviated
as 1-obj), the receiver object of the call to put/get method at line
3/4 and line 8/9 are 𝑂1 and 𝑂2, respectively. Hence, the call to
put/get methods at different call-sites can be distinguished using
contexts [𝑂1] and [𝑂2]. In put (line 17), with 1-obj analysis, we get
𝑝𝑡𝑠 (𝑂1,n) = {𝑂4} and 𝑝𝑡𝑠 (𝑂2,n) = {𝑂4}. Then in the constructor
of Node (lines 27-30), since 𝑂4 is the only one receiver object, we
get 𝑝𝑡𝑠 (𝑂4,key) = {"A","B"} and 𝑝𝑡𝑠 (𝑂4,value) = {𝑂𝐴,𝑂𝐵}. As a
result, call to 𝑂1.get and 𝑂2.get will return a value pointing to
both 𝑂𝐴 and 𝑂𝐵 , leading to cast-may-fail false alarms at line 5 and
line 10.

The example can only be precisely analyzed when the context
depth is set to more than 1. In put (line 17), with 2-obj analy-
sis, we get 𝑝𝑡𝑠 (𝑂1,n) = {(𝑂1,𝑂4)} and 𝑝𝑡𝑠 (𝑂2,n) = {(𝑂2,𝑂4)},
where object 𝑂4 is qualified with a heap context. Hence, the con-
structor of class Node (lines 27-30) is analyzed twice with 2 dis-
tinct contexts: [𝑂1,𝑂4] and [𝑂2,𝑂4]. Thus, we can precisely com-
pute the pointer values of key and value as 𝑝𝑡𝑠 ([𝑂1,𝑂4],key) =
{"A"}, 𝑝𝑡𝑠 ([𝑂2,𝑂4],key) = {"B"}, 𝑝𝑡𝑠 ([𝑂1,𝑂4],value) = {𝑂𝐴},
and 𝑝𝑡𝑠 ([𝑂1,𝑂4],value) = {𝑂𝐵}. Finally, we can correctly ana-
lyze that 𝑝𝑡𝑠 (v1) = {𝑂𝐴} and 𝑝𝑡𝑠 (v2) = {𝑂𝐵}, avoiding false
cast-may-fail alarms.

k-type sensitivity. Type-sensitive analysis is less precise than
object-sensitive analysis. Hence, 1-type analysis cannot distinguish
the pointer values of v1 and v2, yielding same false alarms. More-
over, the standard 2-type analysis cannot distinguish the context in
analyzing the constructor (and other methods) of Node either, since
both 𝑂1 and 𝑂2 have type HashMap (for efficiency, the actual type
parameters of generic-typed local variables are often omitted in the
byte code). The default type-sensitive analysis can be extended with
a simple analysis as illustrated in Section 3.3, to infer the actual
parameters for variables with generic types. Thus, 2-type analysis
can then distinguish the context using the distinct generic types
HashMap<String,A> and HashMap<String,B>.

Discussion. For clarity, we simplify the example in Figure 1 so
that it can be precisely analyzed by a 2-obj analysis. The real im-
plementation of HashMap is much more complicated and may re-
quire a deeper context. Many algorithms and design patterns wrap
generic classes insider other generic classes, which can be precisely
analyzed only with a very deep context. For instance, HashSet is
implemented by encapsulating HashMap and it can only be precisely
analyzed with at least 3-object-sensitivity. Existing work [32, 35]
also summarized numerous scenarios where a deeper context (>=3)
is required. However, since the number of contexts grows exponen-
tially with the depth, it is often infeasible to scale 3-obj analysis to
real-world applications.

2.3 Generic Sensitivity

For generics, the key to ensure precision is to keep the instanti-
ation location, i.e., location instantiating generic type parameters

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Haofeng Li, Jie Lu, Haining Meng, Liqing Cao, Yongheng Huang, Lian Li, and Lin Gao

1 public static void main(String [] args) {

2 G<A> g = new G<A>(); // O1
3 B b = new B(); // O2
4 g.foo(b);

5 }

6 public class G<T> {

7 public void <E> foo(E e) {

8 M<T> m = new M<T>(); // O3
9 m.bar();

10 M<E> n = new M<E>(); // O4
11 n.bar();

12 }

13 }

14 public class M<K> {

15 public void bar(){ }

16 }

Figure 2: Example of generics.

with concrete types, as part of context. As such, distinct pointer
values flow into/from generic methods and generic objects can be
effectively identified. In our example in Figure 1, line 2 and line 7 in-
stantiate the generic class HashMap with actual types. Those actual
types are passed as type variables of HashMap to instantiate Node
at line 17. Hence, the corresponding location (𝑂1 and𝑂2) should be
regarded as the context in analyzing methods of class Node. As a
result, with 1-object-sensitivity, we can compute the same precise
result as 2-obj analysis: 𝑝𝑡𝑠 (𝑂1,key) = {"A"}, 𝑝𝑡𝑠 (𝑂2,key) = {"B"},
𝑝𝑡𝑠 (𝑂1,value) = {𝑂𝐴}, and 𝑝𝑡𝑠 (𝑂1,value) = {𝑂𝐵}.

For the example in Figure 1, an omitting-generics approach may
work by simply omitting all invocation contexts within generic
classes. However, this approach does not work for generic methods.
As shown in Figure 2, the generic method foo (with type parameter
E) is defined in generic class G (lines 6 - 13) with type parameter
T. At line 8, we create a new generic object with type variable T,
whose actual type is instantiated at line 2. Hence, we should pick
𝑂1 as the context in analyzing the method call m.bar at line 9. On
the other hand, line 10 instantiates the generic class M with type
variable E. The instantiate location of E, i.e., 𝑂2 at line 3, will be
picked as the context in analyzing the method call n.bar at line 11.
However, the straight forward omit-generics approach will use 𝑂1
as the context instead.

To effectively analyze the above example, we need to precisely
identify the actual instantiation location of type variables under
different contexts. This may require a context-sensitive pointer
analysis to compute.

3 GENERIC SENSITIVE POINTER ANALYSIS

In our approach, we precisely track propagation of type variables
by augmenting context with generic instantiation locations, which
are efficiently updated context-sensitively during the analysis.

3.1 Context Customization

The traditional context 𝑐 is extended to a tuple ⟨𝑐,𝐺⟩, where 𝐺
records all instantiation sites for available type variables. For non

With Actual Type Arguments Without Actual Type Arguments

1 class C {

2 void foo() {

3 Set <A> s =

4 new HashSet <>();

5 }

6 }

1 class C {

2 Set foo() {

3 Set s =

4 new HashSet ();

5 s.add(new A();)

6 return s;

7 }

8 }
(a) (b)

Figure 3: Generic instatiation in Java.

generic-related methods, 𝐺 is ∅. The size of 𝐺 is bounded to the
number of available type variables.

For object-sensitive analysis,𝐺 maps a type variable to its instan-
tiate location (more precisely, to the object created at the instantiate
location). For type-sensitive analysis, 𝐺 maps a type variable to
its instantiated concrete type. In Java, developers can instantiate
a generic class with explicit types (Figure 3(a)), or without giving
any actual type arguments. In the later case, the generic class is
by default instantiated with type Object. For instance, in Figure 3
(b), s is created at line 3 with type HashSet<Object>. At line 5, an
object with type A is firstly created and implicitly cast to Object,
before it is put in s.

Since type-sensitive analysis relies on concrete type information,
it will fail to distinguish different contexts when generic classes
are instantiated without giving actual type parameters, leading to
imprecise results. We can employ a precise inter-procedural pre-
analysis to infer actual type arguments of generics as [7, 11, 50].
However, the cost of such a pre-analysis may offset the benefits
brought bymore precise type information. Hence, we apply a simple
analysis to infer actual instantiated types of a generic object by
examining its local usages, as follows.

Definition 3.1. Type parameter inference: if generic object 𝑂
instantiating generic class with formal type parameter 𝑇 does not
escape its declared scope and all its usages of 𝑇 can be resolved
to type 𝐶 , we can safely regard 𝐶 as the actual type parameter
instantiating 𝑇 .

We perform a simple conservative escape analysis where a vari-
able escapes a scope if 1) it is accessible outside the scope, 2) it
returns from the scope, or 3) it is stored to another escaping vari-
able. As in Figure 3(b), if s is not returned (i.e., does not escape its
declared scope foo), we can infer that s instantiates HashSet with
type A, i.e., s has type HashSet<A>.

Finally, if we fail to resolve the actual type parameters instanti-
ating a generic class, we use the instantiation location as a pseudo
type. In the example Figure 3 (b), a pseudo type 𝑇3 is introduced to
instantiate s, i.e., the statement at line 3 is regarded as Set<𝑇3> s =
new HashSet() in our analysis. As such, we are effectively apply-
ing object-sensitivity in analyzing generics since each instantiation
location is regarded as a distinct type.

Generic Sensitivity: Customizing Context-Sensitive Pointer Analysis for Generics ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Kind Statements
New 𝑙 : 𝑥 = 𝑛𝑒𝑤 𝐶 ⟨T : 𝐴⟩

Assign 𝑙 : 𝑥 = 𝑦;
Load 𝑙 : 𝑥 = 𝑦.𝑓 ;
Store 𝑙 : 𝑥.𝑓 = 𝑦;
Call 𝑙 : 𝑥 = 𝑣0 .𝑚

′ ⟨T : 𝐴⟩ (𝑣1)

Figure 4: Five types of statements analyzed by context-

sensitive pointer analyses.

3.2 Formalization

Without loss of generality, we consider a simplified subset of Java,
with five types of labeled statements in Figure 4. We write "𝑥 =

𝑛𝑒𝑤 𝐶 ⟨T : 𝐴⟩" for object allocation. If 𝐶 is a generic class, T is
its formal type parameter, and 𝐴 is the actual type parameter in-
stantiating T . Otherwise, both T and 𝐴 is 𝑁𝑖𝑙 . Similarly, a generic
method call "𝑥 = 𝑣0 .𝑚′ ⟨T : 𝐴⟩ (𝑣1)" instantiates its formal type
parameter T with actual type parameter 𝐴. Both T and 𝐴 are 𝑁𝑖𝑙

for non-generic method invocations. For clarity, our formalization
considers NEW and Call statements with one type parameter only.
The general forms of NEW and Call statements with multiple pa-
rameters can be analyzed in the same fashion.

The statement "x = new C(...)" in Java is modeled as "x = new C;
x.<init>(...)", where <init>() is the corresponding constructor in-
voked. Control flow statements are irrelevant for context-sensitive
flow-insensitive analysis hence skipped. Accesses to array elements
are modeled by collapsing all the elements into a special field of
the array. In addition, every method is assumed to return via the
variable 𝑟𝑒𝑡 . Since we formalize a method call with only one actual
parameter, each method also has only one formal parameter 𝑝 .

Given a program, letM, F,H,V,L,T be its sets of methods, fields,
allocation sites, local variables, statement labels and types, respec-
tively. We use the symbol C for the universe of contexts. The fol-
lowing auxiliary functions are used in our rules:

• methodOf: L ↦→ M
• methodCtx :M ↦→ ℘(C)
• dispatch :M × H ↦→ M
• pts : (V⋃

H × F) × C ↦→ ℘(H × C)
• typeOf : V ↦→ T

where methodOf gives the containing method of a statement,
methodCtx maintains the contexts used for analyzing a method,
dispatch resolves a call to a target method, pts records the context-
sensitive points-to information for a variable or field, and typeOf

returns the declared type of a variable.
Given a list of context element 𝑐 = [𝑒𝑛, ..., 𝑒1] and a context

element 𝑒 , we use the notation 𝑒 ++𝑐 for [𝑒, 𝑒𝑛, ..., 𝑒1] and 𝑐𝑘 for
[𝑒𝑘 , ..., 𝑒1] where 𝑘 < 𝑛.

3.2.1 Customizing Object Sensitivity. Let G := T ↦→ H maps a type
variable T ∈ T to an allocation site 𝑂𝑙 ∈ H (identified by label 𝑙).
The universe context is C = H∗ × G. We define the following two
functions:

Update(𝐺,T , 𝐴,𝑂𝑙) =

∅ T ≡ 𝑁𝑖𝑙

[T → 𝑂𝑙] T ≠ 𝑁𝑖𝑙 ∧𝐴 ∉ 𝐺

[T → 𝐺 (𝐴)] T ≠ 𝑁𝑖𝑙 ∧𝐴 ∈ 𝐺

𝑙 : 𝑥 = 𝑛𝑒𝑤 𝐶 ⟨T : 𝐴⟩ 𝑚 = methodOf(𝑙)
𝑐𝑡𝑥 = ⟨𝑐,𝐺 ⟩ ∈ methodCtx(𝑚)

𝐺′ = Update(𝐺, T, 𝐴,𝑂𝑙) ℎ𝑐𝑡𝑥 = ⟨𝑐𝑘−1,𝐺′⟩
(𝑂𝑙 , ℎ𝑐𝑡𝑥) ∈ pts(𝑥, 𝑐𝑡𝑥)

[New]

𝑙 : 𝑥 = 𝑦 𝑚 = methodOf(𝑙) 𝑐𝑡𝑥 ∈ methodCtx(𝑚)
pts(𝑦, 𝑐𝑡𝑥) ⊆ pts(𝑥, 𝑐𝑡𝑥) [Assign]

𝑙 : 𝑥 = 𝑦.𝑓 𝑚 = methodOf(𝑙)
𝑐𝑡𝑥 ∈ methodCtx(𝑚) (𝑂,ℎ𝑐𝑡𝑥) ∈ pts(𝑦, 𝑐𝑡𝑥)

pts(𝑂.𝑓 ,ℎ𝑐𝑡𝑥) ⊆ pts(𝑥, 𝑐𝑡𝑥)
[Load]

𝑙 : 𝑥.𝑓 = 𝑦 𝑚 = methodOf(𝑙)
𝑐𝑡𝑥 ∈ methodCtx(𝑚) (𝑂,ℎ𝑐𝑡𝑥) ∈ pts(𝑥, 𝑐𝑡𝑥)

pts(𝑦, 𝑐𝑡𝑥) ⊆ pts(𝑂.𝑓 ,ℎ𝑐𝑡𝑥)
[Store]

𝑙 : 𝑥 = 𝑎0 .𝑓 ⟨T : 𝐴⟩ (𝑎1) 𝑚 = methodOf(𝑙)
𝑐𝑡𝑥 =< 𝑐𝑚,𝐺𝑚 >∈ methodCtx(𝑚)

(𝑂0, ℎ𝑐𝑡𝑥) ∈ pts(𝑎0, 𝑐𝑡𝑥) (𝑂1,−) ∈ pts(𝑎1, 𝑐𝑡𝑥)
ℎ𝑐𝑡𝑥 =< 𝑐,𝐺 > 𝐺′ = Append(𝐺,𝐺𝑚, T, 𝐴,𝑂1)

𝑐𝑡𝑥′ = ⟨𝑂0 ++𝑐,𝐺′⟩ 𝑚′ = dispatch(𝑓 ,𝑂0)
𝑐𝑡𝑥′ ∈ methodCtx(𝑚′) (𝑂0, ℎ𝑐𝑡𝑥) ∈ pts(𝑡ℎ𝑖𝑠𝑚′

, 𝑐𝑡𝑥′)
pts(𝑎1, 𝑐𝑡𝑥) ⊆ pts(𝑝𝑚′

, 𝑐𝑡𝑥′)
pts(𝑟𝑒𝑡𝑚′

, 𝑐𝑡𝑥′) ⊆ pts(𝑥, 𝑐𝑡𝑥)

[Call]

Figure 5: Rules for k-Obj analysis with generic customization.

Append(𝐺,𝐺1,T , 𝐴,𝑂𝑙) =

𝐺 T ≡ 𝑁𝑖𝑙

𝐺 ⊎ [T → 𝑂𝑙] T ≠ 𝑁𝑖𝑙∧
𝐴 ∉ 𝐺 ⊎𝐺1

𝐺 ⊎ [T → 𝐺 ⊎𝐺1 (𝐴)] T ≠ 𝑁𝑖𝑙∧
𝐴 ∈ 𝐺 ⊎𝐺1

where the function 𝐺 (𝐴) looks up the mapped allocation site of
type variable 𝐴.

The two functions are used to update 𝐺 for NEW and CALL
statements. Figure 5 gives the five rules for analyzing the five kind
of statements in Figure 4. Except for [New] and [Call], the other 3
rules are same as standard k-obj analysis.

In [New], 𝑂𝑙 ∈ H is an abstract heap object created from the
allocation site at 𝑙 , identified by its heap context ℎ𝑐𝑡𝑥 . Given the
method context 𝑐𝑡𝑥 = ⟨𝑐,𝐺⟩, 𝑂𝑙 ’s heap context ℎ𝑐𝑡𝑥 is constructed
as ⟨𝑐𝑘−1,𝐺 ′⟩, where 𝑐𝑘−1 selects the first𝑘−1 context elements from
𝑐 as in standard k-obj analysis and 𝐺 ′ is updated by the Update
function, as follows.

• If 𝑂𝑙 is a non-generic object, i.e., formal type parameter T
is 𝑁𝑖𝑙 , 𝐺 ′ is set to ∅. Thus, method calls with non-generic
objects as their receiver objects are analyzed same as in
standard object-sensitive analysis.

• If𝑂𝑙 is intantiated with a concrete type, i.e., T ≠ 𝑁𝑖𝑙∧𝐴 ∉ 𝐺 ,
𝐺 ′ is set to [T ↦→ 𝑂𝑙]. As a result, the instantiate location
𝑙 is regarded as part of context in analyzing a method call
with 𝑂𝑙 being a receiver object.

• At last, if 𝑂𝑙 is instantiated with a type variable, i.e., T ≠

𝑁𝑖𝑙 ∧ 𝐴 ∈ 𝐺 , we identify the actual instantiate location of
𝐴 by looking up the context of 𝑙 ’s containing method. 𝐺 ′ is
updated to [T ↦→ 𝐺 (𝐴)], enforcing that the actual generic
instantiation location is always part of the context.

Note that the Update function does not preserve existing map-
ping of type variables in 𝐺 . Since those type variables are invisible

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Haofeng Li, Jie Lu, Haining Meng, Liqing Cao, Yongheng Huang, Lian Li, and Lin Gao

in analyzing method calls where 𝑂𝑙 is the receiver object, there is
little benefit to preserve them in the heap context of 𝑂𝑙 .

In [Call], a call to an instance method 𝑥 = 𝑎0 .𝑓 ⟨T : 𝐴⟩ is ana-
lyzed. Let𝑚′ be a resolved targetmethod, wewrite 𝑡ℎ𝑖𝑠𝑚

′
, 𝑝𝑚

′
, 𝑟𝑒𝑡𝑚

′

for the "this" variable, parameter, and return variable of𝑚′, re-
spectively. Let 𝑂0 be a receiver object of the method call with heap
context ℎ𝑐𝑡𝑥 =< 𝑐,𝐺 > and let 𝑐𝑡𝑥 = ⟨𝑐𝑚,𝐺𝑚⟩ be a context of𝑚.
Similar to [New], a context 𝑐𝑡𝑥 ′ = ⟨𝑂0 ++𝑐,𝐺 ′⟩ is constructed in
analyzing𝑚′, where 𝑂0 ++𝑐 appends the receiver object 𝑂0 with
𝑂0’s heap context in a standard manner and 𝐺 ′ is updated by the
Append function, as follows.

• If 𝑓 is a non-generic call, i.e., T ≡ 𝑁𝑖𝑙 ,𝐺 remains unchanged.
• If 𝑓 is a generic call instantiated with a concrete type, i.e.,
T ≠ 𝑁𝑖𝑙 ∧ 𝐴 ∉ 𝐺 ⊎ 𝐺𝑚 , 𝐺 ′ is updated by adding the new
mapping T ↦→ 𝑂𝑙 to 𝐺 .

• If 𝑓 is a generic call instantiated with a type variable, i.e.,
T ≠ 𝑁𝑖𝑙 ∧𝐴 ∈ 𝐺 ⊎𝐺𝑚 , 𝐺 ′ is updated by introducing to 𝐺
a mapping: from T to its actual instantiate site 𝐺 ⊎𝐺𝑚 (𝐴).
Note that available type variables can be propagated from
the receiver object (in which case 𝐴 ∈ 𝐺), or from the caller
method (in which case 𝐴 ∈ 𝐺𝑚).

One may wonder whether the same type variable 𝐴 may exists in
both𝐺 and𝐺𝑚 . In that case, by construction,𝐴 must be introduced
at the allocation site of generic object 𝑂0, by the Update function.
Such information may be further propagated to contexts of method
𝑚. In that case, both 𝐺 (𝐴) and 𝐺𝑚 (𝐴) are resolved to the same
location instantiating 𝐴.

In the conclusion of the rule, 𝑐𝑡𝑥 ′ ∈ methodCtx(𝑚′) shows
how the context of a method are introduced. Initially, we have
methodCtx(main)={⟨[], ∅⟩}.

Let us revisit the example in Figure 2. A generic object 𝑂1 is cre-
ated at line 2. Hence, we have (𝑂1, ⟨[],𝑇 ↦→ 𝑂1⟩) ∈ 𝑝𝑡𝑠 (𝑔, ⟨[], ∅⟩)
([New]). Line 4 invokes the generic method foo<E> where𝑂1 is the
receiver object and𝑂2 is the actual parameter, i.e., g.foo<E:B>(b).
Hence, we analyze the target method foo with an updated context
⟨[𝑂1], [𝑇 ↦→ 𝑂1, 𝐸 ↦→ 𝑂2])⟩ ([Call]). In foo, the object created at
line 8 (𝑂3) is instantiated with type variable T. Hence, it has the
updated heap context ⟨[𝑂1], K ↦→ 𝑂1⟩. Similarly, 𝑂4 at line 10 has
the heap context ⟨[𝑂1], K ↦→ 𝑂2⟩. The two method call at line 9
and 10 are then analyzed with distinct contexts. To summarize, 𝐺
always maps an available type variable to its actual instantiation
location, to encode actual instantiation location of generics as part
of context.

3.2.2 Customizing Type Sensitivity. . For type-sensitive analysis,
G := T ↦→ T maps a type variable T ∈ T to an actual type 𝑇 ∈ T.
The Update and Append functions are defined as follows.

Update(𝐺,T , 𝐴) =

∅ T ≡ 𝑁𝑖𝑙

[T → 𝐴] T ≠ 𝑁𝑖𝑙 ∧𝐴 ∉ 𝐺

[T → 𝐺 (𝐴)] T ≠ 𝑁𝑖𝑙 ∧𝐴 ∈ 𝐺

Append(𝐺,𝐺1,T , 𝐴) =

𝐺 T ≡ 𝑁𝑖𝑙

𝐺 ⊎ [T → 𝐴] T ≠ 𝑁𝑖𝑙∧
𝐴 ∉ 𝐺 ⊎𝐺1

𝐺 ⊎ [T → 𝐺 ⊎𝐺1 (𝐴)] T ≠ 𝑁𝑖𝑙∧
𝐴 ∈ 𝐺 ⊎𝐺1

𝑙 : 𝑥 = 𝑛𝑒𝑤 𝐶 ⟨T : 𝐴⟩ 𝑚 = methodOf(𝑙)
𝑐𝑡𝑥 = ⟨𝑐,𝐺 ⟩ ∈ methodCtx(𝑚)

𝐺′ = Update(𝐺, T, 𝐴) ℎ𝑐𝑡𝑥 = ⟨[𝑐]𝑘−1,𝐺′⟩
(𝑂𝑙 , ℎ𝑐𝑡𝑥) ∈ pts(𝑥, 𝑐𝑡𝑥)

[New]

𝑙 : 𝑥 = 𝑎0 .𝑓 ⟨T : 𝐴⟩ (𝑎1) 𝑚 = methodOf(𝑙)
𝑐𝑡𝑥 =< 𝑐𝑚,𝐺𝑚 >∈ methodCtx(𝑚)

(𝑂0, ℎ𝑐𝑡𝑥) ∈ pts(𝑎0, 𝑐𝑡𝑥)
ℎ𝑐𝑡𝑥 =< 𝑐,𝐺 > 𝐺′ = Append(𝐺,𝐺𝑚, T, 𝐴)

𝑐𝑡𝑥′ = ⟨typeOf(𝑂0) ++𝑐,𝐺′⟩ 𝑚′ = dispatch(𝑓 ,𝑂0)
𝑐𝑡𝑥′ ∈ methodCtx(𝑚′) (𝑂0, ℎ𝑐𝑡𝑥) ∈ pts(𝑡ℎ𝑖𝑠𝑚′

, 𝑐𝑡𝑥′)
pts(𝑎1, 𝑐𝑡𝑥) ⊆ pts(𝑝𝑚′

, 𝑐𝑡𝑥′)
pts(𝑟𝑒𝑡𝑚′

, 𝑐𝑡𝑥′) ⊆ pts(𝑥, 𝑐𝑡𝑥)

[Call]

Figure 6: K-type analysis with generic customization.

Compared to object-sensitivity, the object allocation site is not used
by the two functions.

Figure 6 gives the k-type analysis rules with generic customiza-
tion. We only list [New] and [Call], since the other 3 rules are
same as in Figure 5. Compared to object-sensitivity, types of receiver
objects, instead of allocation sites, are picked as context elements.

Let us study the example in Figure 2 again. A generic object
𝑂1 is instantiated with actual type A at line 2. Hence, we have
(𝑂1, ⟨[],𝑇 ↦→ A⟩) ∈ 𝑝𝑡𝑠 (𝑔, ⟨[], ∅⟩) ([New]). At line 4, we have the
generic method call g.foo<E:B>(b)where𝑂1 is the receiver object.
Since𝑂1 has the declared type G, we analyze the target method foo
with an updated context ⟨[G], [𝑇 ↦→ A, 𝐸 ↦→ 𝐵])⟩ ([Call]). In foo,
the object created at line 8 (𝑂3) is instantiated with type variable T.
Hence, it has the updated heap context ⟨[G], K ↦→ A⟩. Similarly, 𝑂4
at line 10 has the heap context ⟨[G], K ↦→ B⟩. Finally, the method
bar is analyzed under two contexts ⟨[M], K ↦→ A⟩ and ⟨[M], K ↦→ B⟩.
It is worth noting that in our extended type analysis, the generic
type and the recorded actual instantiated types form the complete
instantiated type signatures for generics.

3.3 Implementation

We have implemented our generic customization scheme in WALA
and applied it to several pointer analysis variants: object-sensitive
analysis, type-sensitive analysis, and insensitive analysis. There
is a default implementation of k-obj analysis inWALA. However,
instead of setting the heap context depth to k-1, it sets both method
context and heap context to the same depth k. Hence, we revised
the default implementation to be consistent with the standard k-obj
definition [37, 38, 43]. We also implemented inWALA a new k-type
analysis according to its original definition [43].

Sometimes, generic instantiation information may be optimized
out in Java byte-code. For instance, Java tends to optimize out
the actual instantiation type of a local variable if it is assigned
from another generic typed variable. Hence, we apply simple type
inference based on the rule that the lhs and rhs of an assignment
must have identical generic types.

Following previous works [32, 33, 35], we use JDK1.6 (1.6.0_30) to
analyze our benchmarks. We disable the exclusion option inWALA
which can exclude some packages of JDK because those packages
in the exclusion are wildly used in all benchmarks. For native code,
we use the summaries provided byWALA. We disable the reflection

Generic Sensitivity: Customizing Context-Sensitive Pointer Analysis for Generics ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Table 1: Number of generic object allocations (abbreviated

as GC) and generic method invocations (GM). #S is the number

of instantiate locations, and #A is the number of actual type

arguments.

Programs
Application JDK

GC GM GC GM
#S(#A) #S(#A) #S(#A) #S(#A)

antlr 21(37) 1(1) 503(701) 262(397)
bloat 304(376) 8(8) 342(472) 217(348)
chart 198(277) 39(39) 532(741) 280(420)
eclipse 74(97) 32(32) 349(479) 222(353)
fop 128(195) 4(4) 586(810) 293(431)

hsqldb 102(126) 4(4) 626(851) 342(483)
jython 101(138) 5(5) 346(476) 221(352)
luindex 54(70) 8(8) 452(620) 254(399)
lusearch 54(70) 8(8) 452(620) 254(399)
pmd 187(249) 9(9) 590(810) 308(445)
xalan 35(56) 1(1) 348(482) 217(348)
antlr4 345(450) 1,213(1,225) 610(846) 324(466)

byte-buddy 342(430) 257(261) 380(523) 244(376)
findbugs 455(617) 93(102) 570(794) 295(432)
javassist 60(74) 13(13) 341(470) 218(349)
jflex 21(28) 0(0) 509(704) 265(400)
junit 46(52) 55(56) 393(537) 251(383)

modelmapper 335(416) 206(210) 379(522) 244(376)

Figure 7: Percentages of generic object allocations with actual

types. WA is with actual types, NA is without actual types,

WA-JDK and NA-JDK are generic object allocations in JDK

with or without actual types.

option in WALA since it fails to analyze most benchmarks even
with insensitive pointer analysis.

4 EVALUATION

We evaluate generic sensitive pointer analysis by applying and
comparing our context customization schemes to an array of pointer
analyses at different precision. In total, there are 11 variants of
pointer analyses. For illustration, we mainly compare 2 groups of
them in this section: object-sensitive group (GenO, 1-Obj, Gen+1-Obj,
2-Obj) and type-sensitive group (GenT, 1-type, Gen+1-type, 2-type).

Hereafter, we use GenT as the customization scheme for type-
sensitivity and GenO as the customization scheme for object-sensitivity.

By default, GenT and GenO are our context customization schemes
applied to the insensitive Andersen’s analysis [1]. In this case, only
generic objects/methods are analyzed context-sensitively. The nota-
tion Gen+k-obj represents the GenO scheme applied to k-obj analy-
sis, and Gen+k-type represents the GenT scheme applied to k-type
analysis.

We evaluate the 18 Benchmarks in Table 1, including the popular
Dacapo suite (top half of the table) and 7 popular open source
programs (bottom half of the table). All experiments are conducted
on an Intel Core(TM) i5-10210U laptop (1.6GHz) with 40 GB of
RAM, running Unbuntu 20.04.01. As in previous work [23, 32, 33],
the JDK version is JDK6 (1.6.0_30) and we set a time budget of 90
minutes in analyzing each benchmark. We run each benchmark 5
times and report the average analysis time of the 5 runs.

Our evaluation answers the following research questions:
• RQ1. How extensive is generics used in real-world applica-
tions?

• RQ2. Can generic-sensitivity improve precision over existing
context-sensitive approaches?

• RQ3. Can generic-sensitivity improve efficiency over existing
context-sensitive approaches?

• RQ4. Does generic-sensitivity offer a better trade-off than
standard context-sensitive analyses?

4.1 RQ1. Generic Usages

Table 1 summarizes the generic usages in each benchmark. We
separate the usages in application code with those in JDK libraries
which are transitively invoked by applications. As shown in Ta-
ble 1, there are extensive usages of generics: findbugs has the
largest number of generic object allocations (455) and antlr4 has
the largest number of generic method invocations (1,213). Although
some application, e.g., antlr, uses generics infrequently. Its under-
lying JDK library makes extensive usages of generics, suggesting
the necessity of an optimized context-sensitive pointer analysis
targeting generics.

Figure 7 depicts the percentages of generic usages with actual
type arguments, including those usages where our simple con-
servative type inference analysis (Section 3) can infer actual type
arguments. The number of actual types inferred is small. As shown
in Figure 7, the percentages are quite low for Dacapo Benchmarks.
The reason is that Dacapo is released only a few years after gener-
ics being introduced into Java, and many Java applications at that
time did not use the new generic feature (i.e., instantiating generics
with actual type parameters). The percentage is much higher (>%70)
for the 7 open-source applications, showing that new applications
commonly use modern generic features supported by the language.

Comparing antlr4 to its earlier version antlr, there are much
more generic usages in antlr4, confirming that Java generics is
widely adopted in modern Java applications.

Discussion. Generics is extensively used in modern Java applica-
tions and the underlying JDK library, suggesting the necessity to
develop customized context-sensitive pointer analysis for generics.

4.2 RQ2. Precision

Following [35, 47, 49], wemeasure the precision of context-sensitive
analyses using the four metrics: #call-edges (number of call graph

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Haofeng Li, Jie Lu, Haining Meng, Liqing Cao, Yongheng Huang, Lian Li, and Lin Gao

#cast-may-fail #cast-may-fail

#poly-call #poly-call

#reach-methods #reach-methods

#call-edges #call-edges

Figure 8: Precision metrics, the lower the better. Those timeout cases are outlined with cross.

Generic Sensitivity: Customizing Context-Sensitive Pointer Analysis for Generics ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Figure 9: Performance of object sensitive group.

Figure 10: Performance of type sensitive group.

edges), #reach-methods (number of reachable methods), #poly-call
(number of polymorhpic calls discovered), and #cast-may-fail (num-
ber of cast operations that may fail). As their names suggest, these
metrics are obtained by different client applications of context-
sensitive pointer analyses. All client applications are sound. Hence,
for all the metrics, lower is better.

Since our approach introduces extra context-elements on top
of standard k-obj or k-type analyses, Gen+k-obj (Gen+k-type) is
always more precise than k-obj (k-type) analysis. Figure 8 compares
precision metrics in 2 groups: object-sensitive group (GenO, 1-Obj,
Gen+1-Obj, 2-Obj) and type-sensitive group (GenT, 1-type, Gen+1-
type, 2-type). The left half of Figure 8 shows results for object-
sensitive group, and results of type-sensitive group are given in the
right half.

Under the given 90 minutes budget, 2-Obj analysis fails to pro-
cess the 5 benchmarks: bloat, jython, antlr4, byte-buddy, and
modelmaper. Both 1-obj and 2-type analyses timeout on antlr4.
Those timeout cases are outlined with crosses in Figure 8.

Object-sensitive group. GenO, where only generic objects and
methods are analyzed context-sensitively, is noticeably more pre-
cise than 1-obj for all metrics across all benchmarks. 2-Obj is more

precise than GenO in those benchmarks that it runs to finish: for
#cast-may-fail, #poly-call, #reach-methods, and #call-edge, the ra-
tio of the number reported by GenO against that reported by 2-
obj is 120.34%, 109.65%, 101.14%, and 103.53%, respectively. Gen+1-
obj successfully analyzes all benchmarks without timeouts, and
it achieves slightly better precision than 2-Obj, reporting 97.87%,
101.85%, 99.92%, and 100.10% of the number reported by 2-Obj for
the 4 metrics, respectively.

Type-sensitive group. Gen+1-type is by far the most precise vari-
ant in the group, reporting 59.1%, 92.7%, 97.3%, and 92.1% of the
number reported by 2-type for the above 4 metrics, respectively.
Surprisingly, GenT also achieves better precision than than 2-type,
reporting 72.98%, 96.81%, 98.27%, and 94.90% of the number reported
by 2-type, respectively.

Discussion. Generic sensitivity can significantly improve preci-
sion for both object-sensitivity and type-sensitivity: a Gen+k-Obj
analysis can achieve similar or better precision as a k+1-obj analysis.
For type-sensitivity, the precision gains are even more significant
with GenT outperforming 2-type analysis in precision.

4.3 RQ3. Performance

Figure 9 and Figure 10 compare analysis times for the object-sensitive
group and type-sensitive group, where analysis times are nor-
malized to the context-insensitive analysis (CI). As shown in Fig-
ure 9, 2-Obj timeouts for 5 benchmarks: bloat, jython, antlr4,
byte-buddy and modelmapper. Comparing Gen+1-obj to 1-obj, Gen+
1-obj achieves an average speed up of 1.8 ×, despite the fact that
it is much more precise. Compared to 2-obj with similar precision,
Gen+1-obj achieves a speed up of 62 × for chart, with an average
speed up of 12.6 × for the 13 applications that 2-obj run to comple-
tion. Similarly, in Figure 10, Gen+1-type also achieves noticeably
better performance than 1-type, with an average performance im-
provement of 20%.

Discussion. Although Gen+k-obj (Gen+k-type) introduces extra
context elements to k-obj (k-type) analysis, the performance gain
brought by more precise results can often compensate for the cost
of introduced extra context elements. As an evidence, the 2 generic
sensitive approaches Gen+1-obj and Gen+1-type outperforms 1-obj
and 1-type, respectively.

4.4 RQ4. Precision and Performance Trade-off

Figure 11 depicts the performance and precision spectrum for an
array of 11 pointer analysis variants. The figure plots precision
in #reach-methods metric (with other precision metrics showing
similar results) against analysis time over a set of 9 benchmarks in
Dacapo. The other 2 benchmarks, bloat and jython, are not in-
cluded in the graph since both 2-obj analysis and Gen+2-obj analysis
fail to analyze them.

In Figure 11, lower numbers are better on both axes. Hence,
analyses in the bottom left corner are superior in both precision
and performance. As shown in the graph, the 3 variants Gen+1-
obj, Gen+1-type, and Gen+2-type achieve overall best trade-offs
between precision and performance. The most precise analysis
is Gen+2-obj. However, its performance is similar to 2-Obj and

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Haofeng Li, Jie Lu, Haining Meng, Liqing Cao, Yongheng Huang, Lian Li, and Lin Gao

Figure 11: Precision(#reach-methods)/Performance spectrum for DaCapo benchmarks. Lower is better along both axes.

both are significantly slower than the other variants. For #reach-
methods, Gen+2-type achieves similar precision to Gen+2-obj, with
significant performance improvements. Let us compare Gen+1-obj
with 2-Obj, Gen+1-obj is much faster and it is also more precise than
2-obj for all benchmarks, except for hsqldb. Between Gen+1-type

and Gen+1-obj, Gen+1-type is slightly faster for all benchmarks but
incur significant precision loss for luindex.

Discussion. Generic sensitivity offers a good solution in bal-
ancing precision and performance. The three variants Gen+1-obj,
Gen+1-type, and Gen+2-type achieve overall best precision and per-
formance trade-offs.

Generic Sensitivity: Customizing Context-Sensitive Pointer Analysis for Generics ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

5 RELATEDWORK

Context-sensitive pointer analysis for Java has been extensively
studied in the literature. There are three mainstream variants of
context sensitivity:k-object sensitivity, k-type sensitivity and k-
call-site sensitivity. In addition to the above three variants, the
work [23] proposes a hybrid approach which applies object sen-
sitivity to instance method invocations and call-site sensitivity to
static method invocations. The hybrid approach is superior to pure
object-sensitivity since static methods don’t have receiver objects.
Jonas andWelf [36] use the points-to set of receiver object to approx-
imate a context [36]. In [39], the cartesian product of the points-to
sets of all arguments (including this) are used to symbolically rep-
resent a context. Our generic customization scheme can be adapted
to the above context-sensitive variants as well.

Selective context-sensitivity has gained much attention recently
since if may offer a better trade-off between precision and effi-
ciency, where methods can be analyzed with different context ele-
ments and depths. Researchers have applied manually-selected met-
rics and heuristics [14, 44, 52], or learning-based approaches [19–
22] to selectively analyze a subset of methods context-sensitivity.
Scaler [33] determines whether to analyze a method context-
sensitively or not based on an estimation of its potential mem-
ory consumption. Zipper [32] introduces 3 kinds of value-flow
patterns to identify precision critical methods, and those patterns
can be computed by solving a graph reachablility problem on a
precision flow graph. Zipper achieves significant performance im-
provements, but does not guarantee precision. Eagle [35] performs
a CFL-reachability-based pre-analysis to enable selective context-
sensitivity in k-obj, while guaranteeing precision. Turner [16]
finds a sweet spot between Zipper and Eagle, which enables k-obj
analysis to run significantly faster than Eaglewhile achieve notably
better precision than Zipper. CONCH finds context-dependent ob-
jects, avoiding contexts bloating. Baton [47] proposes a Unit-Relay
framework by collectively integrating different context selectors.
Instead of selecting which methods to be context-sensitive ana-
lyzed, Bean [48] makes k-obj sensitive analysis more precise by
skipping those unhelpful context elements. In [49], Tan et al. apply
a pre-analysis to selectively apply type-based abstractions to heap
objects, provided that such approximation does not affect the preci-
sion of type-based clients, e.g., call graph construction. Compared
to the above selective sensitive approaches, we propose a context
customization scheme targeting generics and our approach can be
applied together with the above optimization techniques, to further
improve performance and efficiency.

There have been numerous approaches leveraging efficient data
structure implementation to scale context-sensitive pointer anal-
ysis, e.g., using bit vectors or bit sets [4, 26], using binary deci-
sion diagrams (BDDs) [24, 25, 53], using geometric encoding tech-
niques [54], or graph systems [51]. The work [2, 9] investigated
on how to manually model semantics of data structures, to effec-
tively speed up an analysis by omitting their complicated imple-
mentation details. Compared to the above approaches, we target
a different problem on how to effectively analyze generics in a
context-sensitive manner and our approach can also benefit from
the above optimization techniques.

6 CONCLUSION

We introduce generic-sensitive pointer analysis, a new context
customization scheme designed for generics. To the best of our
knowledge, this is the first context-sensitive pointer analysis target-
ing generics. We design our context customization scheme based
on the observation that generic instantiate location is key con-
text elements, and apply generic customization to two mainstream
context-sensitive variants: object sensitivity and type sensitive. Ex-
perimental results demonstrate that generic context customization
can significantly improve performance and precision: a Gen+1-obj
analysis can achieve overall better precision than 2-obj analysis,
with a better performance than 1-obj analysis. The average speedup
over 1-obj analysis is 1.8×, and is 12.6× (up to 62 × for chart) over
2-obj analysis.

7 DATA-AVAILABILITY STATEMENT

The tool is available at https://doi.org/10.6084/m9.figshare.20486556.
v2 [28].

ACKNOWLEDGMENTS

We thank all anonymous reviewers for their valuable inputs. This
work is supported by the National Science Foundation of China
(NSFC) under grant number 62132020, the Alibaba Group through
the Alibaba Innovative Research Program, and the CCF-Ant group
research Foundation.

REFERENCES

[1] Lars Ole Andersen. 1994. Program analysis and specialization for the C program-
ming language. Ph.D. Dissertation. Citeseer.

[2] Anastasios Antoniadis, Nikos Filippakis, Paddy Krishnan, Raghavendra Ramesh,
Nicholas Allen, and Yannis Smaragdakis. 2020. Static analysis of Java enterprise
applications: frameworks and caches, the elephants in the room. In Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation. 794–807.

[3] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014. Flow-
Droid: Precise Context, Flow, Field, Object-Sensitive and Lifecycle-Aware Taint
Analysis for Android Apps. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation (Edinburgh, United King-
dom) (PLDI ’14). Association for Computing Machinery, New York, NY, USA,
259–269. https://doi.org/10.1145/2594291.2594299

[4] Mohamad Barbar and Yulei Sui. 2021. Compacting points-to sets through object
clustering. Proceedings of the ACM on Programming Languages 5, OOPSLA (2021),
1–27.

[5] Stephen M Blackburn, Robin Garner, Chris Hoffmann, Asjad M Khang, Kathryn S
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z Guyer, et al. 2006. The DaCapo benchmarks: Java benchmarking devel-
opment and analysis. In Proceedings of the 21st annual ACM SIGPLAN conference
on Object-oriented programming systems, languages, and applications. 169–190.

[6] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative specifica-
tion of sophisticated points-to analyses. In Proceedings of the 24th ACM SIGPLAN
conference on Object oriented programming systems languages and applications.
243–262.

[7] Wei-Ngan Chin, Florin Craciun, Siau-Cheng Khoo, and Corneliu Popeea. 2006. A
flow-based approach for variant parametric types. ACM SIGPLAN Notices 41, 10
(2006), 273–290.

[8] Robert Dyer, Hridesh Rajan, Hoan Anh Nguyen, and Tien N. Nguyen. 2014. Min-
ing Billions of AST Nodes to Study Actual and Potential Usage of Java Language
Features. In Proceedings of the 36th International Conference on Software Engineer-
ing (Hyderabad, India) (ICSE 2014). Association for Computing Machinery, New
York, NY, USA, 779–790. https://doi.org/10.1145/2568225.2568295

[9] Pratik Fegade and Christian Wimmer. 2020. Scalable Pointer Analysis of
Data Structures Using Semantic Models. In Proceedings of the 29th Interna-
tional Conference on Compiler Construction (San Diego, CA, USA) (CC 2020).
Association for Computing Machinery, New York, NY, USA, 39–50. https:
//doi.org/10.1145/3377555.3377885

https://doi.org/10.6084/m9.figshare.20486556.v2
https://doi.org/10.6084/m9.figshare.20486556.v2
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2568225.2568295
https://doi.org/10.1145/3377555.3377885
https://doi.org/10.1145/3377555.3377885

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Haofeng Li, Jie Lu, Haining Meng, Liqing Cao, Yongheng Huang, Lian Li, and Lin Gao

[10] Yanick Fratantonio, Antonio Bianchi, William Robertson, Engin Kirda, Christo-
pher Kruegel, and Giovanni Vigna. 2016. Triggerscope: Towards detecting logic
bombs in android applications. In 2016 IEEE symposium on security and privacy
(SP). IEEE, 377–396.

[11] Robert Fuhrer, Frank Tip, Adam Kieżun, Julian Dolby, and Markus Keller. 2005.
Efficiently refactoring Java applications to use generic libraries. In European
Conference on Object-Oriented Programming. Springer, 71–96.

[12] Michael I Gordon, Deokhwan Kim, Jeff H Perkins, Limei Gilham, Nguyen Nguyen,
and Martin C Rinard. 2015. Information flow analysis of android applications in
droidsafe.. In NDSS, Vol. 15. 110.

[13] Neville Grech and Yannis Smaragdakis. 2017. P/Taint: unified points-to and taint
analysis. Proceedings of the ACM on Programming Languages 1, OOPSLA (2017),
1–28.

[14] Behnaz Hassanshahi, Raghavendra Kagalavadi Ramesh, Padmanabhan Krishnan,
Bernhard Scholz, and Yi Lu. 2017. An efficient tunable selective points-to anal-
ysis for large codebases. In Proceedings of the 6th ACM SIGPLAN International
Workshop on State of the Art in Program Analysis. 13–18.

[15] Dongjie He, Haofeng Li, Lei Wang, Haining Meng, Hengjie Zheng, Jie Liu,
Shuangwei Hu, Lian Li, and Jingling Xue. 2019. Performance-Boosting Sparsifi-
cation of the IFDS Algorithm with Applications to Taint Analysis. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
267–279. https://doi.org/10.1109/ASE.2019.00034

[16] Dongjie He, Jingbo Lu, and Jingling Xue. 2021. Context Debloating for Object-
Sensitive Pointer Analysis. In 2021 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 79–91.

[17] Michael Hind. 2001. Pointer analysis: Haven’t we solved this problem yet?. In
Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineering. 54–61.

[18] IBM. [n.d.]. WALA: T.J. Watson Libraries for Analysis. Retrieved September 7,
2021 from http://wala.sourceforge.net

[19] Minseok Jeon, Sehun Jeong, and Hakjoo Oh. 2018. Precise and scalable points-to
analysis via data-driven context tunneling. Proceedings of the ACM on Program-
ming Languages 2, OOPSLA (2018), 1–29.

[20] Minseok Jeon, Myungho Lee, and Hakjoo Oh. 2020. Learning graph-based
heuristics for pointer analysis without handcrafting application-specific features.
Proceedings of the ACM on Programming Languages 4, OOPSLA (2020), 1–30.

[21] Minseok Jeon and Hakjoo Oh. 2022. Return of CFA: call-site sensitivity can be
superior to object sensitivity even for object-oriented programs. Proceedings of
the ACM on Programming Languages 6, POPL (2022), 1–29.

[22] Sehun Jeong, Minseok Jeon, Sungdeok Cha, and Hakjoo Oh. 2017. Data-driven
context-sensitivity for points-to analysis. Proceedings of the ACM on Programming
Languages 1, OOPSLA (2017), 1–28.

[23] George Kastrinis and Yannis Smaragdakis. 2013. Hybrid context-sensitivity for
points-to analysis. ACM SIGPLAN Notices 48, 6 (2013), 423–434.

[24] Ondřej Lhoták, Stephen Curial, and José Nelson Amaral. 2007. Using ZBDDs
in points-to analysis. In International Workshop on Languages and Compilers for
Parallel Computing. Springer, 338–352.

[25] Ondřej Lhoták, Stephen Curial, and Jose Nelson Amaral. 2009. Using XBDDs
and ZBDDs in points-to analysis. Software: Practice and Experience 39, 2 (2009),
163–188.

[26] Ondřej Lhoták and Laurie Hendren. 2003. Scaling Java points-to analysis using
Spark. In International Conference on Compiler Construction. Springer, 153–169.

[27] Ondřej Lhoták and Laurie Hendren. 2006. Context-sensitive points-to analysis:
is it worth it?. In International Conference on Compiler Construction. Springer,
47–64.

[28] Haofeng Li, Jie Lu, Haining Meng, Liqing Cao, Yongheng Huang, Lian Li, and Lin
Gao. 2022. Generic Sensitivity: Customizing Context-Sensitive Pointer Analysis
for Generics. (8 2022). https://doi.org/10.6084/m9.figshare.20486556.v1

[29] Lian Li, Cristina Cifuentes, and Nathan Keynes. 2010. Practical and Effective
Symbolic Analysis for Buffer Overflow Detection. In Proceedings of the Eighteenth
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(Santa Fe, New Mexico, USA) (FSE ’10). Association for Computing Machinery,
New York, NY, USA, 317–326. https://doi.org/10.1145/1882291.1882338

[30] Lian Li, Cristina Cifuentes, and Nathan Keynes. 2011. Boosting the Perfor-
mance of Flow-Sensitive Points-to Analysis Using Value Flow. In Proceedings
of the 19th ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering (Szeged, Hungary) (ESEC/FSE ’11). As-
sociation for Computing Machinery, New York, NY, USA, 343–353. https:
//doi.org/10.1145/2025113.2025160

[31] Lian Li, Cristina Cifuentes, and Nathan Keynes. 2013. Precise and scalable context-
sensitive pointer analysis via value flow graph. ACM SIGPLAN Notices 48, 11
(2013), 85–96.

[32] Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. 2018. Precision-guided
context sensitivity for pointer analysis. Proceedings of the ACM on Programming
Languages 2, OOPSLA (2018), 1–29.

[33] Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. 2018. Scalability-
first pointer analysis with self-tuning context-sensitivity. In Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 129–140.

[34] Chen Liu, Jie Lu, Guangwei Li, Ting Yuan, Lian Li, Feng Tan, Jun Yang, Liang
You, and Jingling Xue. 2021. Detecting TensorFlow Program Bugs in Real-World
Industrial Environment. In 2021 36th IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE). 55–66. https://doi.org/10.1109/ASE51524.
2021.9678891

[35] Jingbo Lu and Jingling Xue. 2019. Precision-preserving yet fast object-sensitive
pointer analysis with partial context sensitivity. Proceedings of the ACM on
Programming Languages 3, OOPSLA (2019), 1–29.

[36] Jonas Lundberg and Welf Löwe. 2012. Points-to Analysis: A Fine-Grained Evalu-
ation. J. Univers. Comput. Sci. 18, 20 (2012), 2851–2878.

[37] Ana Milanova, Atanas Rountev, and Barbara G Ryder. 2002. Parameterized object
sensitivity for points-to and side-effect analyses for Java. In Proceedings of the
2002 ACM SIGSOFT international symposium on Software testing and analysis.
1–11.

[38] Ana Milanova, Atanas Rountev, and Barbara G Ryder. 2005. Parameterized
object sensitivity for points-to analysis for Java. ACM Transactions on Software
Engineering and Methodology (TOSEM) 14, 1 (2005), 1–41.

[39] Rohan Padhye and Uday P Khedker. 2013. Interprocedural data flow analysis in
soot using value contexts. In Proceedings of the 2Nd ACM SIGPLAN International
Workshop on State Of the Art in Java Program Analysis. 31–36.

[40] Micha Sharir, Amir Pnueli, et al. 1978. Two approaches to interprocedural data flow
analysis. New York University. Courant Institute of Mathematical Sciences

[41] Olin Grigsby Shivers. 1991. Control-flow analysis of higher-order languages or
taming lambda. Carnegie Mellon University.

[42] Yannis Smaragdakis and George Balatsouras. 2015. Pointer analysis. Foundations
and Trends in Programming Languages 2, 1 (2015), 1–69.

[43] Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. 2011. Pick your
contexts well: understanding object-sensitivity. In Proceedings of the 38th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming languages. 17–
30.

[44] Yannis Smaragdakis, George Kastrinis, and George Balatsouras. 2014. Introspec-
tive analysis: context-sensitivity, across the board. In Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and Implementation.
485–495.

[45] Manu Sridharan, Satish Chandra, Julian Dolby, Stephen J Fink, and Eran Yahav.
2013. Alias analysis for object-oriented programs. In Aliasing in Object-Oriented
Programming. Types, Analysis and Verification. Springer, 196–232.

[46] Yulei Sui, Sen Ye, Jingling Xue, and Jie Zhang. 2014. Making context-sensitive
inclusion-based pointer analysis practical for compilers using parameterised
summarisation. Software: Practice and Experience 44, 12 (2014), 1485–1510.

[47] Tian Tan, Yue Li, Xiaoxing Ma, Chang Xu, and Yannis Smaragdakis. 2021. Making
pointer analysis more precise by unleashing the power of selective context
sensitivity. Proceedings of the ACM on Programming Languages 5, OOPSLA (2021),
1–27.

[48] Tian Tan, Yue Li, and Jingling Xue. 2016. Making k-object-sensitive pointer anal-
ysis more precise with still k-limiting. In International Static Analysis Symposium.
Springer, 489–510.

[49] Tian Tan, Yue Li, and Jingling Xue. 2017. Efficient and precise points-to analysis:
modeling the heap by merging equivalent automata. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementation.
278–291.

[50] Frank Tip, Robert M Fuhrer, Adam Kieżun, Michael D Ernst, Ittai Balaban, and
Bjorn De Sutter. 2011. Refactoring using type constraints. ACM Transactions on
Programming Languages and Systems (TOPLAS) 33, 3 (2011), 1–47.

[51] Kai Wang, Aftab Hussain, Zhiqiang Zuo, Guoqing Xu, and Ardalan Amiri Sani.
2017. Graspan: A Single-Machine Disk-Based Graph System for Interprocedural
Static Analyses of Large-Scale Systems Code. In Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming Languages and
Operating Systems (Xi’an, China) (ASPLOS ’17). Association for Computing Ma-
chinery, New York, NY, USA, 389–404. https://doi.org/10.1145/3037697.3037744

[52] Shiyi Wei and Barbara G Ryder. 2015. Adaptive context-sensitive analysis for
JavaScript. In 29th European Conference on Object-Oriented Programming (ECOOP
2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[53] John Whaley and Monica S Lam. 2004. Cloning-based context-sensitive pointer
alias analysis using binary decision diagrams. In Proceedings of the ACM SIGPLAN
2004 conference on Programming Language Design and Implementation. 131–144.

[54] Xiao Xiao and Charles Zhang. 2011. Geometric encoding: forging the high
performance context sensitive points-to analysis for Java. In Proceedings of the
2011 International Symposium on Software Testing and Analysis. 188–198.

[55] Hongtao Yu, Jingling Xue, Wei Huo, Xiaobing Feng, and Zhaoqing Zhang. 2010.
Level by level: making flow-and context-sensitive pointer analysis scalable for
millions of lines of code. In Proceedings of the 8th annual IEEE/ACM international
symposium on Code generation and optimization. 218–229.

https://doi.org/10.1109/ASE.2019.00034
http://wala.sourceforge.net
https://doi.org/10.6084/m9.figshare.20486556.v1
https://doi.org/10.1145/1882291.1882338
https://doi.org/10.1145/2025113.2025160
https://doi.org/10.1145/2025113.2025160
https://doi.org/10.1109/ASE51524.2021.9678891
https://doi.org/10.1109/ASE51524.2021.9678891
https://doi.org/10.1145/3037697.3037744

	Abstract
	1 Introduction
	2 Motivation
	2.1 Context Sensitivity
	2.2 A Motivating Example
	2.3 Generic Sensitivity

	3 Generic Sensitive Pointer Analysis
	3.1 Context Customization
	3.2 Formalization
	3.3 Implementation

	4 Evaluation
	4.1 RQ1. Generic Usages
	4.2 RQ2. Precision
	4.3 RQ3. Performance
	4.4 RQ4. Precision and Performance Trade-off

	5 Related Work
	6 Conclusion
	7 Data-Availability Statement
	Acknowledgments
	References

