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ABSTRACT

Missing- Permission-Check (MPC) vulnerability is a type of bug

where permission checks are not enforced for privileged opera-

tions. MPC vulnerability is prevalent and can cause severe security

impacts. This paper proposes the first tool to detect MPC vulnerabil-

ities in distributed cloud systems. We conduct an in-depth study of

95 real-world MPC vulnerabilities and our findings motivate a new

tool named MPChecker. The tool introduces a combined log-static

analysis to automatically identify privileged operations by infer-

ring variables representing user owned data and critical system

states, whose accesses need to be protected. We have evaluated

MPChecker with 6 popular distributed systems. The tool reports

44 new vulnerabilities, and 43 of them have been confirmed and

labeled as critical bugs. Moreover, 1 bug is particular dangerous

and the developers requested to keep it undisclosed.
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1 INTRODUCTION

Distributed cloud systems are facing great security challenges. The

great amount of valuable data hosted on cloud platforms have nat-

urally caught the attention of attackers. Although various security

mechanisms have been introduced to secure cloud systems, there

are widely existing vulnerabilities which may be exploitable, lead-

ing to numerous cloud breaches [1, 30, 34, 57].

Among all types of vulnerabilities in distributed cloud systems,

access control vulnerabilities are one of the most prevalent and

troublesome [11, 23, 33, 54]. Distributed cloud systems consist of

multiple components, where each component provides a set of

remotely accessible APIs for communication with users or with

other components in the system. Very often, developers forget to

introduce proper permission checks in those APIs, resulting in

easily exploitable Missing-Permission-Check (MPC) vulnerabilities.

As studied in [4], insecure interfaces and APIs account for 42% of

total cloud security vulnerabilities. Furthermore, our study over

152 real-world access control vulnerabilities in distributed cloud

systems points out that 62.5% of them are MPC vulnerabilities in

public APIs. Such vulnerabilities are the direct cause of many cloud

breaches [1, 13, 17, 30, 31, 34, 47–49, 56, 57, 60], such as the data

leak of hundreds of thousands of booking reservations in Autoclerk,

a hotel reservation management system [47].

Figure 1 gives a MPC vulnerability example from the distributed

file system HDFS [12]. The function deleteBlockPool is a re-

motely invocable API (via remote procedural call, i.e., RPC). The

API, as suggested by its name, will delete critical system data (line

7) and it is supposed to be accessible to the administrator only.

However, there exists a MPC vulnerability in the original imple-

mentation and an attacker can invoke the API remotely to exploit

this vulnerability and delete arbitrary system data, causing severe

damages to the system. To fix this vulnerability, developers simply

introduce a permission check at line 2, ensuring that the API is

accessible to the administrator only.

https://doi.org/10.1145/3548606.3560589
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1 public void deleteBlockPool(BlockPoolId blockPoolId,

boolean force, String remoteUser) {↩→

2 + checkSuperuserPrivilege(remoteUser); //permission

check↩→

3 LOG.info("delete block pool {} by user {}",

blockPoolId, remoteUser);↩→

4 if (this.blockPoolManager.get(blockPoolId) == null) {
5 throw new IOException("...");
6 }
7 this.data.deleteBlockPool(blockPoolId, force);

//privileged operation↩→

8 }
9

10 public void checkSuperuserPrivilege(String remoteUser) {
11 if (!remoteUser.equals(this.superUser)){
12 throw new AccessControlException();
13 }
14 }

Figure 1: A MPC vulnerability in HDFS (CVE-2014-0229).

1.1 Existing Efforts

MPC vulnerabilities are detected by finding those program paths

from program entry (entry of the main function or entry of a pub-

licly accessible API) to a privileged operation without permission

checks. There are 2 steps involved, as follows.

1. Identify permission checks and privileged operations.

2. Check whether privileged operations are guarded by permis-

sion checks along all program paths.

For the example in Figure 1, line 7 (invocation to method data.-
deleteBlockPool()) is a privileged operation and the vulnerability
surfaces on the program paths from line 1 (entry of the publicly

accessible API) to the privileged operation at line 7. In the fix, a

permission check (checkSuperuserPrivilege()) is introduced at

line 2 to guard the privileged operation at line 7.

There have been a few approaches to detect MPC vulnerabilities

in operating systems [55, 64], and in web applications [19, 53]. In

those approaches, permission checks are manually specified. Since

their targeted systems commonly implement permission check-

ing APIs in one module (e.g., LSM in Linux [61]), the amount of

manual efforts is insignificant. Given the set of manually specified

permission checks, those approaches automatically mine privileged

operations based on the assumption that privileged operations must

have been guarded by permission checks on the majority of pro-

gram paths. Thus, methods whose call-sites are frequently guarded

by permission checks are considered as privileged functions and

their call-sites are privileged operations. Next, after identifying per-

mission checks and privileged operations, classic inter-procedural

dataflow analysis [26, 40, 51] can be applied to find those vulner-

able program paths with unguarded privileged operations. Such

consistency-checking approaches [21] work well for those privi-

leged operations that are partially protected, i.e., privileged func-

tions whose call-sites are guarded only on a subset of program

paths.

1.2 Challenges in Distributed Systems

Existing approaches, although well suitable for their targeted sys-

tems, may not be applicable to distributed systems. To understand

MPC vulnerabilities in distributed systems, we conduct an empirical

study of 152 real-world access control vulnerabilities from 10 widely

used distributed systems. Among the 152 vulnerabilities, 95 of them

(62.5%) are MPC vulnerabilities. To the best of our knowledge, this

is the first in-depth study targeting access control vulnerabilities in

distributed systems. Some of our findings are summarized below.

1. Different components in distributed systems often imple-

ment distinct permission checking mechanisms. Hence, it

requires large amount of manual efforts to examine and spec-

ify all permission checking methods in distributed systems.

In addition, 32.6% of permission checks are done ad hocly

by directly testing user variables in conditional statements

(e.g., line 11 in Figure 1). It is unclear how to specify those

conditional statements. If permission checks could not be

identified correctly, privileged operations cannot be precisely

mined, making existing approaches ineffective. Moreover, a

large percentage (60%) of MPC vulnerabilities are triggered

by privileged operations not guarded anywhere in the pro-

gram. As a result, existing mining-based approaches fail to

recognize those operations.

2. In distributed systems, permission checks and privileged op-

erations often locate in different components. Thus, it is crit-

ical to understand and precisely analyze inter-component in-

teractions – a well known challenge in analyzing distributed

systems. Existing static analyses do not understand such com-

munication mechanisms ( implemented via RPCs, message

events, or web sockets), resulting in incomplete call graphs

and imprecise analysis results. Furthermore, it is challenging

to scale static analyses to the whole system (e.g., analyze

all components of a distributed system together), given the

large combined program size of all different components of

a system.

The above findings highlight that existing approaches are not

applicable to distributed systems, and we need new techniques to

address the above challenges, and effectively detect MPC vulnera-

bilities in distributed systems.

1.3 Solution and Contributions

We propose a new approach to detect MPC vulnerabilities in dis-

tributed systems. Our approach automatically identifies permission

checks and privileged operations in distributed systems, by infer-

ring variables representing user owned data and critical system

states. Accesses to user owned data and critical system states are

privileged operations because those accesses may corrupt user

data and system state, or leak insensitive information. To effec-

tively detect MPC vulnerabilities, we formulate it as a classic inter-

procedural finite subset dataflow problem (IFDS). For efficiency,

instead of applying IFDS directly to the whole system, we sum-

marize inter-component communications and apply IFDS to each

component separately.

Our approach is based on the following two observations.



• Permission checks in distributed systems are performed by

checking variables representing users, either directly in con-

ditional statements (e.g., line 11 in Figure 1), or wrapped as

APIs (e.g., checkSuperuserPrivilege() in Figure 1).

• Accesses to user owned data and critical system states are

privileged operations, which need to be guarded by permis-

sion checks.

Intuitively, accesses to data owned by a user need to be checked

by testing the accessing user, to avoid unauthorized accesses. In

addition, only the super user can write to critical system states.

Therefore, we automatically identify privileged operations by in-

ferring variables representing user-owned data and critical system

states. Those variables are referred to as user-related variables and

system-related variables, respectively. The key question is: how to

find user-related and system-related variables automatically?

Our study indicates that most user-related variables (90%) are

printed in log statements. Hence, we apply log analysis together

with static analysis to infer user-related variables. Specifically, given

the set of all user names, we check runtime logs to discover variables

printing the same name as a user. A type-based static analysis

is followed to discover more user-representing variables in the

program. Variables representing user owned data are discovered

via a correlational analysis, which examines those variables printed

in a same log instance with a user variable. On the other hand,

system-related variables are discovered by analyzing instance fields

checked as exception or error conditions (e.g., if (this.field)
abort();). These variables are regarded as critical state variables,

since their values indicate abnormal error conditions.

We realize our approach in a new tool named MPChecker and

evaluate it on 6 popular distributed systems. The tool correctly

discovers hundreds of privileged operations and permission checks

in those systems, and reports 44 new vulnerabilities that have never

been found before. To date, 20 reported bugs have been fixed and

23 bugs have been confirmed by the original developers. All con-

firmed bugs are labeled as critical bugs that may be easily exploited.

Moreover, 1 bug is particular dangerous and the original develop-

ers requested to keep it undisclosed. The tool also reports 7 false

positives, with a false positive rate of 13.7%.

The contributions of this paper are summarized as follows:

• For the first time, we conduct an in-depth study on 95 MPC

vulnerabilities in distributed systems. Our study sheds lights

on new detection techniques for MPC vulnerabilities in dis-

tributed systems.

• We propose a new log-based analysis to detect MPC vul-

nerabilities in distributed systems. Our approach automati-

cally discovers permission checks and privileged operations

at high precision, by inferring variables representing user

owned data and critical system states.

• We develop MPChecker, the first MPC vulnerability de-

tection tool for distributed systems. The tool successfully

reports 44 new critical bugs in 6 real-world distributed sys-

tems, with a false positive rate of 13.7%.

In the rest of the paper, Section 2 studies 95 real MPC vulnerabili-

ties in detail. We illustrate our approach in Section 3 and evaluate it

in Section 4. Section 5 reviews related work and Section 6 concludes

the paper.

Table 1: Distributed systems under study.

Systems Type

Checking

Mechanisms

# of

bugs

HDFS[12] Distributed file system M1,M3,M4 8

MapReduce[20] Data process framework M1,M3 1

YARN[58] Resource manager system M1,M3 13

HBase[59] Key value database M1,M4 35

ZooKeeper[29] Coordination service M1 1

Kafka[35] Data process framework M1,M4 0

Mesos[27] Resource manager system M1,M4 25

MongoDB[16] Document database M1,M2 1

Kubernetes[10] Resource manager system M1,M2,M3,M4 3

OpenStack[50] Cloud computing platform M1,M3 8

TOTAL — — 95

2 CHARACTERISTICS STUDY

We study 10 widely used distributed systems in Table 1. Those

systems provide different services (Column 2) and are written in

different languages including Java, C++, Go, Scala, and Python. Our

study results are publicly available at https://github.com/lujiefsi/

MPChecker.

2.1 Vulnerabilities Collection

We compile a set of 152 access control vulnerabilities (including

95 MPC vulnerabilities) in the 10 systems in Table 1. For each vul-

nerability, we collect its description, fixing patches, and related

discussions from developers. There are 49 vulnerabilities collected

from the CVE (the common vulnerabilities and exposures) vulnera-

bility database [5]. We examined all reported 368 CVEs of the 10

systems from 2012, and filtered out 49 access control vulnerabilities.

The rest 103 vulnerabilities come from the issue tracking sys-

tems of the systems under study. We query each issue tracking

system using the following keywords: "access control", "authoriza-
tion", "security check", "permission check", "privilege check", "admin
only", and "superuser only". The keyword-based search returns a

total of 3,058 issues. We manually checked each issue, and obtained

103 real exploitable access control vulnerabilities.

Among the 152 access control vulnerabilities, 95 (62.5%) of them

are MPC Vulnerabilities which are fixed by introducing extra per-

mission checks. All our studied systems, except Kafka, suffer from

MPC vulnerabilities. Kafka transparently authorize external re-

quests with API hooks, effectively preventing such flaws. The re-

maining 57 access control vulnerabilities are caused by buggy per-

mission check implementations (e.g., checking against a wrong

user, erroneous access control policies, etc). How to detect those

access control vulnerabilities is worth of separate investigation.

2.2 Caveats

The 95 Vulnerabilities under study, although extensive, are by no

means complete and some findings may not be generalizable. To re-

duce this threat, we chose a wide range of 10 popular distributed sys-

tems. Those systems range from distributed file systems, coordina-

tion services, resource management systems, key-value databases,

document-oriented database, data processing systems, and cloud

https://github.com/lujiefsi/MPChecker
https://github.com/lujiefsi/MPChecker


Figure 2: Four different permission checking mechanisms.

computing platforms, covering most key elements in cloud comput-

ing. The 10 systems are written in different languages (C/C++, Java,

Scala, Go, and Python), and often implement distinct permission

check mechanisms.

Due to the complex nature of the work and the large amount

of manual efforts involved, subjectivity may exist. To reduce this

threat, each vulnerability is inspected and cross-validated by at

least two authors of this paper, as in previous work [7, 22].

2.3 Findings

We study each MPC vulnerability to understand its permission

checking mechanisms, triggering privileged operations, and in-

volved components. All vulnerabilities are fixed by introducing a

permission check in the remotely accessible API exposing the bug.

2.3.1 Permission Checking Mechanisms. Figure 2 depicts the 4 per-
mission checking mechanisms in distributed systems, which differ

from each other on how permission checking APIs are invoked.

M1. This is the traditional mechanism where external request

and permission checking are performed on the same node:

1○ user sends a request to the server node, 2○ the server

node invokes corresponding permission checking APIs be-

fore returning the result of the request.

M2. In this mechanism, permission checks are performed on a

separate node: 1○ user sends a request to the server node, 2○
the server node sends a permission check query to the au-

thorization node (via RPC or web socket), 3○ the server node

receives response (accept or deny) from the authorization

node, 4○ if permission granted, the server node responses to

the request and returns the result.

M3. This is token-based authorization: 1○ user asks for a token

from the authentication node, 2○ a token with authentication

and authorization information is returned, 3○ user sends a

request together with authorization token to the server node.

4○ the server node checks permission against the token and

the user, before responding the request.

1 private Set<Application> getApps(String remoteUser){
2 Set<Application> result = new HashSet<Application>();
3 for (Application app:this.applications){
4 + if(!app.getUser().equals(remoteUser)){ //ad-hoc

permission check↩→

5 + continue;
6 + }
7 result.add(app); // privileged operation
8 }
9 return result;
10 }

Figure 3: An ad hoc permission check example (YARN-8455).

M4. This mechanism employs a centralized node to authorize

and dispatch user requests: 1○ user request is handled by the

authorization node, 2○ if permitted, the authorization node

forwards the request to the server node, 3○ the server node

handles the request and returns to the authorization node,

4○ the authorization node forwards the response to the user.

As shown in Table 1 (Column 3), each system under study adopts

one or more mechanisms, and the classic mechanism M1 is imple-

mented in all studied systems. M2 performs permission check on

a remote node, while the other 3 mechanisms check permission

locally via direct API calls.

Although being invoked differently in different mechanisms,

all permission checking APIs implement permission checks in a

similar fashion – by testing user variables. For instance, in our

example in Figure 1, the API checkSuperuserPrivilege() simply

tests whether the accessing user is a super user or not (line 11) .

Note that although M3 implements token-based authorization, it

still checks the accessing user together with input token.

In many cases, permission checks are done ad hocly by directly

testing user variables in conditional statements, instead of invoking

its wrapping APIs. Among all 95 MPC vulnerabilities, 32.6% of

them (31) are fixed with ad hoc permission checks. For instance, in

Figure 3, the vulnerability (YARN-8455) is fixed by directly testing

the accessing user (lines 127 - 129). Note that it is unclear how to

manually specify those ad hoc permission checks.

Finding 1: There are four different mechanisms which invoke

permission checking APIs in different manners. All APIs im-

plement permission checks by simply testing user variables in

conditional statements. In many cases, privileged operations are

guarded by this simple conditional test directly as ad hoc permis-

sion checks: 31 out of 95 studied MPC vulnerabilities are fixed

by introducing ad hoc permission checks.

2.3.2 Privileged Operations. Among all 95 MPC vulnerabilities, 84

of them access user owned data (i.e., user-related variables) without

permission checks. For instance, the two vulnerabilities in Figure 1

and Figure 3 manifest themselves with unguarded accesses to user

owned data blockPoolId and app, respectively. User owned data

can be directly created by a user, or can be transitively derived from

other user owned data. Distributed systems often divide large data

chunks (e.g., data created by a user) into small pieces. Those small



Figure 4: Simplified hierarchical structures of user-related

types for all 10 studied systems. The structures are automati-

cally inferred via a combined log-static analysis. For clarity,

many user-related types are not given.

data pieces are managed by the system and typically invisible to

regular users, i.e., they can only be accessed by the administrator

for system maintenance. As an example, in HBase, a Table object
is created by a regular user and can be divided into small regions

(object of type Region). Both Table and Region are user-related

types which are managed by the regular user and system user,

respectively. Accesses to variables of both types (Region and Table)
need to be checked.

Figure 4 shows the hierarchical structure of user-related types

for the 10 studied systems. Each square represents a user-related

type, and edges represent relations between data of those types.

For instance, in HBase, Namespace objects are directly created by

a user, while Table objects can be directly created by a user, or

derived from Namespace objects.
We find that for 80/84 (95.2%) vulnerabilities, the bug-triggering

variables with unguarded accesses are printed in logs. As an illus-

tration, in Figure 1, line 3 logs the user owned data blockPoolId
together with the accessing user remoteUser. Another interesting
finding is that more than half unguarded variables (50/84) are not

directly created by users. Those derived variables can be easily

ignored by developers and often not guarded properly, resulting in

MPC vulnerabilities.

The rest 11 vulnerabilities modify critical system states without

checking permissions. As illustrated in Figure 5, the instance field

shutdownInProgress denotes the state whether the node is shut-
ting down or not. If yes, all operations on this node (e.g., writing

data) will be blocked. This variable can only be modified by the ad-

ministrator. However, the public API shutdownDatanode() forgets
to check the accessing user, leading to a MPC vulnerability. Note

that the field shutdownInPogress is tested as an error condition

1 void shutdownDatanode(String remoteUser) {//RPC method
2 + checkSuperuserPrivilege(remoteUser); // permission

check↩→

3 // Shutdown can only be called once.
4 if (this.shutdownInProgress) {
5 throw new IOException("Shutdown already in

progress.");↩→

6 }
7 this.shutdownInProgress = true; //privileged

operation↩→

8 ......
9 }

Figure 5: A vulnerability modifiying system-related variables

(HDFS-CVE-2014-0229).

1 /*WARNING: the below methods can damage the cluster.*/
2 public void closeRegion(CloseRegionRequest request){
3 + getCoprocessorHost().preClose(request.getUser());

//Permission check↩→

4 String name = request.getRegion();
5 HRegion region = thisrsServices.getRegion(name);
6 CloseRegionHandler crh = new

CloseMetaHandler(region);↩→

7 this.executorService.submit(crh);
8 }
9 //CloseRegionHandler extends EventHandler
10 public void process() throws IOException {
11 LOG.info("Close " + region);
12 this.onlineRegions.remove(region);
13 }
14 //permission check
15 public void preClose(String user) throws IOException {
16 ....
17 if (!user.equals(this.owner)) {
18 throw new AccessControlException();
19 }
20 ....
21 }

privileged operation

Figure 6: AMPC vulnerability invovingmultiple components

(HBASE-7331).

which leads to exceptions if test fails (lines 4 - 6). In fact, 10/11

unprotected system-related variables are tested as error conditions.

Finding 2: Among the 95 MPC vulnerabilities, 84 of them have

unauthorized accesses to user-related variables and 80/84 of these

user-related variables are printed in logs. The rest 11 vulnerabili-

ties modify critical system-related variables, where 10 system-

related variables are used as error conditionss.

2.3.3 Component Interactions. There are 28 vulnerabilities directly
involving multiple components, which means either the privileged

operation or its fixing permission checks are performed remotely

on a different component. Figure 6 gives an example (the bug and

that in Figure 1 are grouped together and assigned one CVE). The

API closeRegion() is a RPC function which attempts to offline

the region and is supposed to be accessible to the administrator



Figure 7: Overview of MPChecher.

only. The missing permission check here indicates that any user

can remove arbitrary region in HBase, causing huge damage to the

system. Interestingly, even the developers have commented that

this method can damage the cluster, they still forgot to check its

permissions.

In this example, the privileged operation is performed remotely.

TheAPI closeRegion()wraps the request as a CloseMetaHandler
event (line 6) and submits it at line 7. The event is then dispatched to

its corresponding handler, i.e., CloseRangionHandler.process(),
where the privileged operation at line 12 is invoked to remove

regions from the system. Hence, the event-sending call at line 7

is eventually handled by its corresponding event handler. To pre-

serve such semantics, we need to link the event-sending call to its

corresponding handler as in [43].

Note that although only 28/95 vulnerabilities directly involve

multiple components, interactions between component are preva-

lent in all studied systems. Some of those interactions may contain

permission checks or privileged operations. There will be false

positives and false negatives if those remote permission checks

and privileged operations are not taken into account. Thus, it is

critical to precisely analyze inter-component communications for

detecting MPC vulnerabilities in distributed systems.

Finding 3: 28/95 (29.5%) vulnerabilities directly involve multiple

components.

3 MPCHECKER

Figure 7 overviews MPChecker at a high level. The tool consists

of 3 steps. First, we automatically infer user- and system-related

variables by analyzing run time logs of the studied system, to-

gether with its byte-code (currently the tool can only analyzes Java

programs). Next, permission checks and privileged operations are

identified from the set of inferred variables. In the last step, those

privileged operations which are not guarded by permission checks

are reported asMPC vulnerabilities if they are reachable from public

interfaces .

MPChecker requires manual specification of user names, pub-

lic interfaces, and inter-component communication patterns. Fig-

ure 8 gives a simplified specification for HBase. User names are

needed to infer user-related variables. The given interfaces (i.e.,

BlockingInterface) define entry points of the system which can

1 Specification
2 User:
3 user1:hadoop,hbase:hadoop,yarn:hadoop
4 Interface: BlockingInterface
5 RPC:
6 Client:BlockingStub
7 Server:MasterRpcServices
8 Event:
9 context:null
10 Client:ExecutorServer.submit($1)
11 Server:$1.process()

Figure 8: Simplified specification example for HBase.

be remotely invoked by users. As in [45, 64], public methods imple-

menting specified interface methods are APIs remotely accessible

to users. Communication patterns (RPC, message events, and web

sockets) are specified as a client/server pair, denoting the request-

sending client and the request handler, respectively. We specify RPC

by providing a client class with its corresponding server class (lines

5 - 7), since RPCs are realized via a client class and a correspond-

ing server class implementing the same interface. Message events

and web sockets are defined by providing a context-sensitive client

site paired with its handler. The context denotes calling contexts

such as containing functions and case conditions. A null context
suggests that the handler is resolved to the same target under any

calling context. We use a meta variable $1 to symbolize the actual

parameter type of a client request, which is used to resolve the

corresponding handler of a client (lines 8 - 11).

Let us examine the example in Figure 6. The call to method

this.executorService.submit(crh) at line 7 is an event client.

Since the argument crh has type CloseRegionHandler, the event
handler is resolved as CloseRegionHandler.process().

3.1 Infer User- and System-related Variables

As pointed out in Finding 2, most user-related variables are printed

in logs and system-related variables are often tested as error con-

ditions. Hence, we examine run time logs, together with a type-

based static analysis, to discover user-related variables. Instance

fields checked as error conditions are regarded as system-related

variables. Alternatively, we could employ a pure static approach

by statically examining every logging statement. However, it will

require users to manually specify all user-representing variables,

which is labor-intensive and error-prone.

3.1.1 User-related Variables. To start with, we need to figure out

which variable represents a user. This is realized by a log analy-

sis [62]. The log analysis constructs a regular expression pattern

for each logging statement where string literals are kept in the

expression and logged variables are abstracted as ".*". This pat-
tern is then matched with run-time logs to extract the concrete

run-time values of logged variables from matching log instances.

Variables which have identical values with given user names are

user-representing variables.

We illustrate how our log analysis works using the simple ex-

ample (extracted from HBase) in Figure 9 and Figure 10, where

Figure 9 shows 3 log statements and their run-time log instances



1 LOG.info(user+ "created table " + table);
2 //".*" created table ".*"
3 LOG.info("created region " + region);
4 //created region ".*"
5 LOG.info("Initialized assign procedures:table=" + table1

+ ",region=" + region);↩→

6 //Initialized assign procedures:table= ".*" ,region= +

".*"↩→

Figure 9: Simplified log statements and their logging patterns

(in comments) for HBase.

1 user1 created table 'table1'
2 user1 created table 'table2'
3 created region "region1"
4 created region "region2"
5 Initialized assign

procedures:table='table1',region='region1'↩→

6 Initialized assign

procedures:table='table1',region='region2'↩→

Figure 10: Simplified run time log instances for HBase.

are given in Figure 10. Our studied systems use common logging

libraries such as SLF4J[3] and Log4j[2], with provided logging inter-

faces including fatal, error, warn, info, debug, and trace.
For each log statement, we extract a log pattern expressed by reg-

ular expressions. In Figure 9, the extracted log pattern for each

statement is highlighted in comments. Variables printed in logs

are abstracted as ".*" in the log pattern, and their run-time val-

ues can be obtained from a matching log instance (as in [62]). For

instance, the log pattern ⟨".*" created table ".*"⟩ matches

with the log instance ⟨"user1 created table ’table1’"⟩. As a
result, the run-time values of logged variables user and table are

extracted as "user1" and "’table1’", respectively. The variable
user represents a user with name "user1".

Rule 1. A variable is a user-related variable if it is printed in a
same log instance with a user variable or with another user-related
variable.

The above rule is applied to discover user-related variables from

logs. For audit or diagnosis purpose, systems often log events when

a user accesses his data, or when user data is further partitioned or

moved. Hence, it is natural to regard those variables as user-related

variables if they appear in a same log instance with user variables.

Such variables often represent data directly created by users, which

are accessible to their owner only. Similarly, a variable in a same

log instance with another user-related variable suggests that it is

derived from the other user-related variable.

In our example in Figure 10, variable table and user appear

in the same log instance (lines 1 and 2). Hence, table is a user-

related variable. Note that the variable table have multiple run

time values (i.e., "’table1’" and "’table2’"), suggesting that a
user can create multiple tables at run time. The variable region
is printed in same log instances with table (line 5 and 6), and is

considered as a user-related variable derived from table.

Rule 2. A variable is a user-related variable if its type matches
with the type of a user-related variable. Type 𝑇𝐴 matches with 𝑇𝐵 if
1) 𝑇𝐴 is an object type identical to or inherits from 𝑇𝐵 , 2) if it is a
collection with one element type matches with 𝑇𝐵 , or 3) if it has an
indexing field whose type matches with 𝑇𝐵 .

Our log analysis effectively discovers user-related variables from

log instances. However, some user-related variables may not be

logged or their logging statements may not have been executed.

Hence, we perform a simple type-based analysis, as summarized in

the above rule, to find all other user-related variables in a program.

The type matching rules for the first two cases are self-explainable.

The third case is to handle the common practice when a field is used

to uniquely index its containing object. For instance, in HBase, field

region is used as an index for RegionInfo. As a result, RegionInfo
is also regarded as a user-related type.

The type-based analysis applies to user-related variables with

object types only. We employ the simple type-based analysis in-

stead of a classic pointer analysis because user-related variables are

often well typed, and precise and sound pointer analysis [41, 42]

for distributed systems remains to be an open research topic. For

variables of primitive types, we following their use-def chains to ob-

tain the set of variables they propagate to. Specifically, we examine

the def-use chain of a primitive-typed variable, to discover those

variables/fields it is assigned/stored to. This process is iteratively

applied to those newly discovered variables until a fixed point. As

such, all variables (fields) transitively assigned from a user-related

variable are discovered.

3.1.2 System-related variables. We find system-related variables

based on the observation that they are often tested as error condi-

tions. Hence, we first locate those error-indication program points

which abort normal execution.

1 if (this.stopped) {
2 LOG.error("Node has been stopped");
3 return;
4 }

We consider the following two types of error-indication program

points: 1) statements throwing exceptions (e.g., line 5 in Figure 5),

and 2) return statements of a public API immediately following a

faulty-level logging statement (e.g. Log.error()), as in the above

code snippet.

Given an error-indication point, we examine the conditional

statement it directly control depends on. If the conditional state-

ment checks an instance field, we regard the field as a system-related

variable. The intuition is that system states are commonly stored

in instance fields. Conditional statements may also test input con-

ditions (e.g., parameters or function returns), and these checked

variables are not counted as system-related variables.

3.2 Identify Permission Checks and Privileged

Operations

3.2.1 Permission checks. As stated in Finding 1, permission checks

are implemented by either directly testing user variables or calling

APIs wrapping these user tests. Hence, all conditional statements

testing user variables are permission checks. Permission checking



APIs are recognized via function summary: amethod is a permission

checking API if there exists a permission check post-dominating its

entry. For instance, checkSuperuserPrivilege() in Figure 1 and

preClose() in Figure 6 are summarized as permission checking

APIs.

Sometimes, an API performs permission checks only if the au-

thorization service is enabled, as shown in the code snippet below.

1 void checkSuperuserPrivilege(String user){
2 RouterPermissionChecker pc = getPermissionChecker();
3 if (pc != null) {
4 pc.checkSuperuserPrivilege(user);
5 }
6 }

When security configuration is not enabled, the authorization object

pc is null and the check at line 4 is skipped. Without considering

this case, we will report many MPC vulnerabilities which can be

triggered only if the security configuration is disabled. Developers

believe such configuration is intentional and often classify them

as false positives. To address this case, we adopt a similar strategy

as in [64]: when a permission checking invocation is guarded by a

null check on its receiving object, we mark the null check (i.e., line

3 in the example) as the wrapper permission check.

3.2.2 Privileged Operations. Accesses to user- or system-related

variables are categorized as privileged operations. More specifi-

cally, those operations writing user- or system-related variables, or

leaking user-related variables are privileged operations. Intuitively,

they suggest dangerous operations that may corrupt user data or

the whole system, or may leak sensitive information.

Write operations are putField instructions (in Java byte-code)

on user- or system-related variables. If the variable is a collection,

invocation to APIs modifying the collection (by removing or adding

elements, e.g., insert and remove for set) are manually labeled

as write operations. User-related variables may contain sensitive

information private to the owner. Hence, a statement is a privileged

operation if it returns a user-related variable from a public API,

or if it writes user-related variable to IO. Since such operation

may disclose sensitive information to public, it is labeled as a leak

operation.We optimistically assume that variables with int or bool
types contain no sensitive data, and filter out those leak points for

int- or bool-typed variables.

3.3 Detect MPC Vulnerabilities

A MPC vulnerability manifests if there exists a program path from

the program entry (entry of public APIs) to a privileged opera-

tion. We formulate the detection of MPC vulnerabilities as a classic

IFDS (inter-procedural, finite, distribute, subset) dataflow prob-

lem [51], which effectively computeswhether a privileged operation

is guarded by a permission check or not. An unguarded privileged

operation suggests that there exists a path from the entry to the

privileged operation without permission checks.

3.3.1 Inter-component Communications. One of the key challenges
in analyzing distributes systems lies in how to effectively handle

inter-component communications [9]. Components communicate

with each other via RPCs, message events, or web sockets. To avoid

the daunting tasks of analyzing the complex communication mech-

anism implementations (where dynamic features such as reflection

are heavily used), we rely on user specification (Figure 8) to resolve

the target of a client request. A request can then be viewed as a

direct call to its handler. As such, different components of a system

can be connected together and the system can be analyzed in the

standard manner.

However, it is often impractical to analyze a distributed system

as a whole, given the large combined program size of all its compo-

nents. Hence, instead of linking all components together, we apply

function summary to summarize whether a request is handled by a

permission checking API or by a privileged operation. A request

is regarded as a privileged operation if there are unguarded priv-

ileged operations in its corresponding handler. Otherwise, it is a

permission check if there exists a permission check which post-

dominates the entry of the handler. Take Figure 6 for example. The

event-sending client at line 7 (this.executorService.submit())
is summarized as a privileged operation since there exists un-

guarded privileged operation (line 12) in its handler (CloseRegion-
Handler.process()). With this optimization, we can analyze each

component separately, significantly reducing program size and

improving efficiency.

3.3.2 Data-flow Analysis. The IFDS (inter-procedural, finite, dis-
tribute, subset) algorithm by Reps et al. [51] solves a large set of

inter-procedural data-flow problems as a generalized graph reach-

ability problem. The algorithm operates on a so-called exploded

graph. At each program point in the inter-procedural call graph

(ICFG) of a program, a node is introduced to the exploded graph

for each data-flow fact in the analysis domain. Edges encapsulate

the semantics of transferring functions in data-flow analysis. A

data-flow fact holds at a program point if there exists a realizable

path from the program entry to its representing node in the ex-

ploded graph. For context-sensitivity, return from a function needs

to match with its call-site to make the path realizable.

For MPC vulnerability detection, the data-flow value is either

true or false, denoting whether a point is unguarded or not, i.e.,

whether there exists a path from program entry to the point without

checking permissions or not. Equations 1-3 give the data flow func-

tions. The analysis propagates data-flow values forwardly along the

ICFG of the program. At the entry of a public interface, the value is

initialized to true and it is only set to false by permission checks.

At a program point when multiple paths converge, data-flow val-

ues along different paths are merged with the ∨ operator. If the

analyzed result is true at a privilege operation, a MPC vulnerability

will be reported.

𝐼𝑁𝑒𝑛𝑡𝑟𝑦 = 𝑡𝑟𝑢𝑒 (1)

𝐼𝑁𝑖 =
∨

𝑝∈𝑝𝑟𝑒𝑑𝑖

(
𝑂𝑈𝑇𝑝

)
(2)

𝑂𝑈𝑇𝑖 =

{
𝑓 𝑎𝑙𝑠𝑒 permission check

𝐼𝑁𝑖 otherwise
(3)

3.3.3 An example. Let us examine the example in Figure 11. The

API move is a public API which can be remotely invoked to move

the given region to a target node. If the target node is given, a



1 void move(byte[] regionName, byte[] dest, String user){
2 Plan p = getAssignment(regionName);
3 HRegionInfo hri = p.getFirst();
4 if (dest == null) {
5 unassign(new RegionPlan(hri, randome()));
6 } else{
7 this.cpHost.preMove(user);
8 unassign(new RegionPlan(hri, dest));
9 }
10 }
11

12 void preMove(String user){
13 if (!superUsers.contains(user)) {
14 throw new AccessDeniedException();
15 }
16 }
17

18 void unassign(RegionPlan plan){
19 this.regionPlans.put(plan.getRegion(), plan);
20 }

1

2

3

4

5

Figure 11: An illustration example (HBASE-6246).

Table 2: Number of user specifications. # Is is the number

of specified interfaces. # T is the total number of specified

communication patterns.

System # Is # APIs

# Communication patterns

# RPCs # Events # Sockets # T

HDFS 3 732 31 2 6 39

YARN 2 542 21 115 52 188

MapReduce 2 155 15 54 17 86

HBase 2 371 27 17 30 74

Zookeeper 1 7 1 19 43 63

CloudStack 2 1994 134 0 11 145

permission check is applied at line 7 by calling the API preMove().
However, if the target node is not given, the API randomly chooses

a node, and the region is moved without checking permissions.

In our analysis, at program point 1 , the data-flow fact is initial-

ized as true then being propagated forwardly. At the call site 2 ,

IFDS propagate the fact to the callee function unassign(), and the

program point 5 at line 19 is an unguarded privileged operation on

this path. On another path, at program point 3 (line 7), the fact is

set to false. Thus, on the path from 3 → 4 → 5 , the fact remains

false. At the merge point 5 , since the data-flow fact is true along
the path 1 → 2 → 5 , the fact at line 19 is true after merging facts

along different paths. Hence, we successfully report a vulnerability.

3.4 Limitation

Manual Efforts. One of the concerns is the manual efforts in-

volved in specifying public interfaces and communication patterns.

Table 2 presents the number of specification for the 6 Java systems

we evaluated. Column 1 gives the number of specified public inter-

faces, which is at most 3 (HDFS). Public APIs implementing those

interface methods are automatically derived, and their numbers

are much larger (Column 3). Compared to interfaces, it takes more

efforts to specify communication patterns: we manually provide

188 communication patterns for YARN and 145 for CloudStack

(Column 7). YARN dispatches events and web sockets to different

handlers at distinct contexts. As a result, an event or socket client

is often cloned multiple times, each with a distinct context. On

the other hand, CloudStack mostly communicate via RPCs and the

system offers a large number of public services via RPC classes

(134). In our experience, developers can easily give a specification

of communication patterns of a system: it takes us at most one day

to specify the communication patterns for a system, by reading its

official documents.

Permission Checks. Weonly consider the simple permission check-

ing implementation where a user is conditionally tested. This trade-

off works well for the 10 distributed systems under study. How-

ever, it may not be generalizable to other implementations, e.g.,

token-based authorization with permission checked against a to-

ken. Unrecognized permission checks can be manually specified,

as in previous work. In our study, systems adopting token-based

authorization check both user and its token together.

Our approach optimistically assumes that any permission check

is sufficient to prevent unauthorized accesses. It does not apply

to authorization vulnerabilities caused by insufficient permission

checks or misused permission checks [28]. We plan to extend our

approach to detect such vulnerabilities, by analyzing the identity

and capability of checked users.

Privileged Operations. We introduce a novel log-based analysis to

automatically identify privileged operations from inferred user- and

system-related variables, based on the assumption that accesses to

those variables are privileged. One may argue that this assumption

is not true: system-related variables may be harmlessly modified,

and user-related variables can be exposed to public without disclos-

ing confidential information. There is no simple yes-or-no answer

to the argument. However, in our experiments, only 5 false posi-

tives are caused by incorrect privileged operations, suggesting the

truthfulness of our assumption.

In our evaluation, the log-based analysis does discover signifi-

cantlymore privileged operations than existing consistency-checking

analyses. However, its effectiveness largely depends on the quality

of logs. Distributed systems tend to offer rich log information for

diagnosis [65], and we are able to precisely uncover hundreds of

privileged operations from a small number of log instances gener-

ated by built-in workloads.

4 EVALUATION

We implement MPChecker in WALA[6], with 9K lines of Java code.

The standard insensitive Andersen’s analysis is employed to build

the call graph and we extend WALA’s IFDS framework for MPC

vulnerability detection (Step 3 in Figure 7).We evaluateMPChecker

using 6 distributed systems written in Java (Table 2), including

HDFS, HBase, MapReduce, YARN, Zookeeper, and CloudStack [36].

Note that CloudStack is not a subject in our empirical study and

this bemchmark is used in our evaluation to test the generality of

our approach. All experiments are conducted on a server with an

80-core Intel(R) Xeon(R) Gold 6230 CPU at 2.10GHz and 500 GB of

memory, running CentOS 8.



Table 3: Number of privileged operations and permission

checks. # U and # S stands for user-related and system-related,

respectively. # PC is the number of permission checks.

System

Related Variable Privileged Operation

# PC

# U # S # Total # U # S # Total

HDFS 417 270 687 564 217 781 18

YARN 1,045 59 1,104 611 331 942 17

MapReduce 1,286 210 1,496 317 157 474 21

HBase 659 151 810 511 139 650 14

Zookeeper 98 53 151 82 27 109 2

CloudStack 3,426 2,084 5,510 664 227 891 130

For each system under evaluation, we pull its latest trunk version

to evaluate the capability of MPChecker in detecting new MPC

vulnerabilities. Each system is profiled with its built-in workload

to collect run-time logs. We evaluate the recall of MPChecker by

applying the tool on previous buggy versions with known vulner-

abilities. Since all previous work [19, 53, 55, 64] targets different

applications and is not publicly available, there is no available

baseline to compare. We try our best to compare with previous

approaches by manually verifying whether a reported bug can be

detected with previous consistency-checking mechanisms or not.

The evaluation answers the following research questions:

• RQ1. How precise does MPChecker identify privileged op-

erations?

• RQ2. How effective does MPChecker detecting MPC bugs?

• RQ3. How efficient is MPChecker?

4.1 RQ1. Identify Privileged Operations

Whether we can precisely identify privileged operations or not is

key to the effectiveness of our tool. Table 3 summarizes the num-

ber of related variables (Columns 2 - 4), the number of privileged

operations (Columns 5 - 7), and the number of derived permission

checking APIs (Column 8) for each system. MPChecker automati-

cally infers thousands of user-related (Column 2) and system-related

(Column 3) varaibles. Accesses to those variables generate hundreds

of privileged operations as shown in Column 7.

An immediate question arises: are those identified operations

really privileged? We have manually checked each operation and

confirmed that all of them do access user- or system-related vari-

ables as expected. Later experiments further confirmed that most

of those accesses are real privileged operations: there are only 5

false positives introduced by incorrect privileged operations.

It is difficult to measure whether there is any missed privileged

operation. We manually examined the bug-triggering operations

in all studied vulnerabilities belonging to the systems under eval-

uation: one privileged operation is missed because it accesses a

user-related variable not printed in logs.

4.2 Effectiveness

We evaluate the effectiveness of MPChecker in terms of its ability

in detecting existing and new vulnerabilites.

4.2.1 Existing Vulnerabilities. Table 4 summarizes the results in

detecting existing vulnerabilities. All 57 MPC vulnerabilities from

the 5 Java systems in our study are selected. These 57 vulnerabilities

Table 4: Results on 57 existing vulnerabilities. Number in

bracket denotes the number of bugs in a issue.

Detected

HDFS-3628 MR-7097 HDFS-15053(2)

HDFS-3331 HDFS-2917 CVE-2014-0229(3)

YARN-7157 YARN-3517 YARN-8319(2)

YARN-8221 YARN-5554 YARN-8455(6)

HBASE-6246 HBASE-12552 HBASE-7331(4)

HBASE-8692 HBASE-12674 HBASE-19400(6)

HBASE-24345 HBASE-19634 HBASE-19401

HBASE-19483(9) HBASE-15132 HBASE-6292

ZOOKEEPER-CVE-2019-0201

Not Detected

HBASE-15488 HBASE-12916

HBASE-19400(4) HBASE-6104

access 49 different variables, 21 different user/resource types and 54

different operations. Except for the user-related variable WALEntry,
which is never logged, our analysis successfully identifies all user-

related variables and their associated types and operations. Overall,

MPChecker reports 50 existing vulnerabilities with 7 false nega-

tives, at a recall rate of 87.8%.

Four vulnerabilities (HBASE-6104 and 3 in HBASE-19400) are

not detected due to reflection, where MPChecker fails to find the

privileged operations in reflective method calls. Static analysis for

reflection [37] is a well-known challenging problem. The vulnera-

bility HBASE-12916 is missed because it accesses user-related vari-

ables which are not printed in logs. This is also the only known case

where our log-based analysis fails to uncover user-related variables.

For the two remaining undetected vulnerabilities (HBASE-15488

and 1 bug in HBASE-19400), privileged operations are conducted

on a different system (Zookeeper). Currently MPChecker does not

take such inter-system interactions into account.

4.2.2 New Vulnerabilities. Table 5 gives the 44 new vulnerabilities

reported by MPChecker. For each reported vulnerability, we list

the public API exposing the bug, type of privileged operation (Col-

umn 3), related variable (Columns 4 - 6), and number of involved

components (Column 7).

Except for Zookeeper, MPChecker detects MPC vulnerabilities

in all systems under evaluation: HDFS has by far themost number of

vulnerabilities (24), followed by HBase (8) and CloudStack (8). Most

detected vulnerabilities (36) are caused by unprotected privileged

write operations, and the rest 8 vulnerabilities leak user owned data

(Column 3). Column 5 lists the related variable for each vulnerabil-

ity: 16/28 related variables are primitive/objective typed (Column

4), and 27/17 variables are user-related/system-related (Column6).

As shown in Column 7, 20 bugs involve at least 2 components and

HDFS-15752-1 is triggered by 3 components together.

We have patched all 44 reported vulnerabilities. Among the 44

bugs, 20 of our patches have been accepted and another 23 bugs

have been confirmed by the original developers (Column 8). The

bug MapReduce-7330-43 is still under review. All confirmed bugs

are labeled as critical bugs and can be easily exploited.

A PoC Exploit. Figure 12 constructs a proof-of-concept (POC)

exploit for HBASE-25432-25, with 4 lines of code. The exploit works

as follows. First, we connect to the server as user2 (line 1). At line
2, we forge a request to disable the table named "test". Note that



Table 5: New vulnerabilities reported by MPChecker. Each vulnerability is indexed with "issue ID-number", where multiple

vulnerabilities are grouped in one issue. The issue numbers for HBASE-27 is not disclosed, as requested by the original

developers. # Comp stands for the number of involved components.

ID API Operation Related Types Related Variables User/System # Comp Status

HDFS-15752-1 fsck Leak BlockId blocksMap user-related 3 Fixed

HDFS-16004-2 isFormatted Write Journal journalsById system-related 1 Confirmed

HDFS-16004-3 getJournalState Write Journal journalsById user-related 1 Confirmed

HDFS-16004-4 newEpoch Write PersistentLongFile lastPromisedEpoch system-related 1 Confirmed

HDFS-16004-5 format Write StorageState state system-related 1 Confirmed

HDFS-16004-6 journal Write long curSegmentTxId user-related 1 Confirmed

HDFS-16004-7 heartbeat Write StorageState Value system-related 1 Confirmed

HDFS-16004-8 startLogSegment Write PersistentLongFile lastWriterEpoch user-related 2 Confirmed

HDFS-16004-9 finalizeLogSegment Write long nextTxId user-related 2 Confirmed

HDFS-16004-10 purgeLogsOlderThan Write Journal journalsById user-related 2 Confirmed

HDFS-16004-11 getEditLogManifest Leak RemoteEditLog fjm user-related 1 Confirmed

HDFS-16004-12 prepareRecovery Leak PersistentLongFile lastWriterEpoch user-related 1 Confirmed

HDFS-16004-13 acceptRecovery Write long highestWrittenTxId user-related 2 Confirmed

HDFS-16004-14 doPreUpgrade Write BestEffortLongFile committedTxnId user-related 2 Confirmed

HDFS-16004-15 doUpgrade Write long cTime user-related 2 Confirmed

HDFS-16004-16 canRollBack Write Journal journalsById system-related 1 Confirmed

HDFS-16004-17 doRollback Write StorageState state system-related 1 Confirmed

HDFS-16004-18 discardSegments Write BestEffortLongFile committedTxnId user-related 1 Confirmed

HDFS-16004-19 getJournalCTime Write Journal journalsById user-related 1 Confirmed

HDFS-16004-20 getEditLogManifestFromJournal Leak RemoteEditLog fjm user-related 1 Confirmed

HDFS-16004-21 getJournaledEdits Leak NavigableMap dataMap user-related 1 Confirmed

HDFS-16004-22 BackupNode#startLogSegment Write BNState bnState user-related 2 Confirmed

HDFS-16004-23 BackupNode#journal Write long txid user-related 1 Confirmed

HDFS-16004-24 doFinalize Write Journal journalsById user-related 1 Confirmed

HBASE-25432-25 setTableStateInMeta Write TableName tableName2State user-related 1 Fixed

HBASE-25432-26 fixMeta Write RegionStateNode regions user-related 1 Fixed

HBASE-27 - Write Region - user-related 1 Fixed

HBASE-25441-28 stopServer Write boolean stopped system-related 1 Fixed

HBASE-25441-29 updateFavoredNodes Write Address regionFavoredNodesMap user-related 1 Fixed

HBASE-25441-30 updateConfiguration Write Configuration conf user-related 1 Fixed

HBASE-25441-31 clearRegionBlockCache Leak Region onlineRegions user-related 2 Fixed

HBASE-25441-32 clearSlowLogsResponses Leak State states user-related 2 Fixed

HBASE-25877-33 compactionSwitch Write boolean compactionsEnabled system-related 2 Fixed

CLOUDSTACK-10434-34 updateVolume Write boolean _txn system-related 2 Fixed

CLOUDSTACK-10434-35 detachVolumeViaDestroyVM Write boolean _txn system-related 2 Fixed

CLOUDSTACK-10434-36 takeSnapshot Write boolean _txn system-related 2 Fixed

CLOUDSTACK-10434-37 migrateVolume Write boolean _txn system-related 2 Fixed

CLOUDSTACK-10434-38 createApiKeyAndSecretKey Write boolean _txn system-related 2 Fixed

CLOUDSTACK-10434-39 applyLBStickinessPolicy Write boolean _txn system-related 2 Fixed

CLOUDSTACK-10434-40 applyLBHealthCheckPolicy Write boolean _txn system-related 2 Fixed

CLOUDSTACK-10434-41 createPrivateTemplate Write boolean _txn system-related 2 Fixed

CLOUDSTACK-10434-42 updateSnapshotPolicy Write boolean _txn system-related 2 Fixed

MAPREDUCE-7330-43 getJobAttempts Leak ApplicationAttempt amInfos user-related 1 Submitted

YARN-10555-44 getAppAttempts Leak ApplicationAttempt applications user-related 1 Fixed

1 Hbck hbck =/*login as user2*/

ConnectionFactory.createConnection().getHbck();↩→

2 TableState state=new/*'test' belong to user1*/
TableState(TableName.valueOf("test"),
TableState.DISABLED);

↩→

↩→

3 hbck.setTableStateInMeta(state);
4 hbck.tableExists(TableName.valueOf("test"));

Figure 12: The PoC example.

this table belongs to another user (user1), which is not supposed

to be accessed by user2. After receiving the request (sent at line

3), the server will disable the table as requested without checking

its permissions. Line 4 confirms that the table named "test" has
been dropped. As such, an attacker can easily corrupt data belong

to other users, resulting in severe damages.

Security Impacts. MPC vulnerabilities can cause security prob-

lems such as denial of service (DoS), data corruption, and informa-

tion leak (see Section 1.3). Among the 44 reported bugs, 7 of them

cause DoS, 9 of them leak sensitive information (e.g., MapReduce-

7330-43 leaks password in amInfos), and the rest 28 bugs cause

data loss. All those bugs can be exploited easily and are confirmed

as security flaws by the original developers. Particularly, the devel-

opers requested to undisclose 1 bug since they believe that the bug

is a severe flaw which may cause catastrophic problems.



Table 6: Analysis time of MPChecker.

System

(#)

LOC

(#)

logs

(s)

Step1

(s)

Step2

(s)

Step3

(h)

Total

HDFS 870,746 809 56 34 20,769 5.79

YARN 946,766 792 79 81 23,400 6.54

MapReduce 32,2968 1,089 103 48 4,871 1.39

HBase 1,257,954 662 68 79 26,351 7.32

Zookeeper 363,853 216 13 8 120 0.04

CloudStack 671,842 999 1,693 842 59,216 17.15

Fixes. All 44 new vulnerabilities are fixed by introducing permis-

sion checks, and 23 of them are patched with ad hoc permission

checks since there is no existing API available. Once again, this

emphasizes that it is difficult to manually specify all permission

checks in distributed systems. Our patches also help to find two new

bugs in the security test of HBase: the newly introduced permission

checks throw access denied exceptions which are not correctly

handled. The two bugs have already been fixed.

Comparison. We manually verify each reported vulnerability

and confirm that only 13 of them can be detected with existing

consistency-checking mechanisms [21, 55, 64]. These mechanisms

cannot identify privileged operations for the remaining 31 vulnera-

bilities: 26 of which are not guarded by any permission checks, 4

privileged operations are remotely performed on a separate compo-

nent, and 1 operation is partially guarded by an ad hoc permission

check. In addition, if ad hoc permission checks are not recognized,

an analysis will report hundreds of false positives.

4.2.3 False Positives. MPChecker reports 7 false positives, with

a false positive rate of 13.7%. There are 5 false positives in HBase.

Two of them are caused by permission checks performed in a

different system (i.e., HDFS): the two APIs bulkLoadHFile and

cleanupBulkLoad access files in HDFS, where permissions are

checked by HDFS. Such false positives can be addressed with addi-

tional specification, by marking those corresponding invocations

to HDFS as permission checks. MPChecker reports another 2 false

positives because they return user-related variable of type Region.
Theoretically, an attacker can construct a DDOS attack once the

target node of the region is located. However, developers believe

such information should be made to public because "locate regions
by any client is fundamental to how HBase works". The last false
positive in HBase returns cluster ID to user, which is considered

to be safe. MPChecker reports it as a bug because it assumes such

user-related variables may contain sensitive information.

The rest 2 false positives are reported in YARN: the two APIs

(getNewApplication and getNewReservation) can increase the

application ID in YARN. MPChecker reports them as bugs since

they modify user-related variables. However, YARN is designed in

such a way that any authenticated user can submit an application

hence the permission always granted. The 2 reports in YARN, to-

gether with the last 3 false reports in HBase, are the only 5 cases

caused by incorrect privileged operations with harmless accesses

to user-related variables.

1 public void fsck(){
2 ......
3 for (String blk: this.blockIds) {
4 BlockInfo blockInfo =

this.blockManager.getStoredBlock(block);↩→

5 this.out.println(blockInfo);
6 }
7 .....
8 }
9 Output:
10 Block Id: blk_1073741825
11 Block belongs to: /private/file_name_sensitive.txt

Figure 13: A vulnerability leaking sensitive information

(HDFS-15752-1).

4.3 Efficiency

Table 6 reports the times in analyzing each system. Column 1

presents the number of lines of code (LOC) for each system and

Column 2 gives the number of log instances generated by running

the built-in workload of each system. The number of log instances

are small: except for MapReduce (1,089), all other systems have less

than 1,000 log instances. Column 3 - 5 show the break down times

of each step and the total analysis times are given in Column 6. The

majority of analysis times are consumed by the IFDS solver in step

3 (Column 5).

The analysis time is directly related to the number of public

APIs of each system (Column 3 in Table 2), since we run the time-

consuming IFDS solver once for each API. It takes the longest time

to analyze CloudStack (17.15 hours), with 1,764 APIs. Zookeeper

can be analyzed in 3 minutes because it has only 7 public APIs.

4.4 Case Studies

Here we study 2 interesting new bugs reported by MPChecker.

HDFS-15752-1. MPChecker reports this bug in the web API

interface fsck since it leaks user-related variable (blockInfo) at
line 5. The API returns all block information (including information

for blocks belonging to other users) to the request sender, including

block ID and its containing file as shown in the output (lines 9

- 11). However, the file name and location may be confidential

to the requesting user. As an illustration, the file may belong to

another user and it is stored in a confidential directory (private)
with access mod set to x700. By exploiting this vulnerability, an

attacker can invoke the API fsck to read secret files names in the

confidential directory, bypassing access control of the file system.

We have submitted this issue to the Apache security group and they

are considering to assign it a CVE number.

HBASE-25441-32. This bug is reported by MPChecker because

the user-related variable state is returned from a public API (line

7). Hence, it may leak sensitive information. Further investigation of

the buggy code tells us that the function call to evictBlockByHfil-
eName() (line 5) is an expensive operation (commented in line 9).

As such, an attacker can also invoke this API to perform expensive

operations on the server node numerous times, causing denial of

service.



1 public ClearRegionBlockCacheResponse

clearRegionBlockCache(Request request) {↩→

2 List<State> states = new ArrayList<State>();
3 List<HRegion> regions =

getRegions(request.getRegionList(), stats);↩→

4 for (HRegion region : regions) {
5 stats = stats.append(evictBlocksByHfileName(region));
6 }
7 return states;
8 }
9 /*Evicts all blocks for a specific HFile. This is an

expensive operation... */↩→

10 public CacheEvictionStats evictBlocksByHfileName(){
11 .....
12 }

Figure 14: A vulnerability causing DOS (HBase-25441-32).

4.5 Discussion

MPChecker effectively detects MPC vulnerabilities at high preci-

sion, with a recall and false positive rate of 87.8% and 13.7%, respec-

tively. The effectiveness of MPChecker is largely benefited from

its ability in precisely identifying privileged operations. Among the

44 reported new bugs, 31 of them are undetectable with existing

techniques because their consistency-checking analyses fail to find

many privileged operations which are never protected. In addition,

only 1 false negative is observed due to missed privileged opera-

tions and only 5 false positives are caused by incorrect privileged

operations, suggesting the precision of our log-based analysis in

identifying privileged operations.

As other bug detectors, MPChecker does not guarantee sound-

ness or completeness. Hence, there are false positives and false

negatives. All false reports are due to well-known challenges such

as reflection and interactions cross multiple systems.

5 RELATEDWORK

There are several approaches [28, 52, 53, 55, 64] targeting MPC

vulnerabilities in different systems. AutoISES [55] automatically

infers code-level security specifications with user-provided secu-

rity checks, by statically analyzing the correlation between data

structure accesses and security checks. Sun et al. [53] constructs a

sitemap for different roles in a web application, andMPC vulnerabil-

ities are detected by checking whether browsing from unprivileged

pages to privileged pages succeeds or not. RoleCast [52] observes

a consistent software engineering pattern and develops a novel

algorithm for discovering this pattern in web applications. The

tool then applies role-specific consistency analysis to find miss-

ing security checks. PeX [64] applies a static consistency-checking

analysis to find critical Linux kernel functions frequently guarded

by permission checks, then searches for a vulnerable path to an

unprotected critical kernel function. ACHyb [28] addresses the

false positives of Pex via a combined static-dynamic analysis. Com-

pared to existing work, MPChecker targets distributed systems. In

MPChecker, privileged operations are automatically identified by

inferring user- and system-related variables via a log-based analy-

sis. This approach effectively addresses the limitation of existing

consistency-checking approaches in analyzing distributed systems.

Bug detection for distributed cloud systems has been extensively

studied in the past [8, 15, 24, 24, 25, 32, 38, 43, 44]. Those state-of-

the-arts focus on crash recovery bugs [22, 44, 46], network parti-

tion bugs [7], distributed concurrency bugs [39, 43, 45], exception-

related bugs [14, 63], and data corruption bugs [18]. To the best of

our knowledge, MPChecker is the first tool targeting MPC vulner-

abilities in distributed systems.

6 CONCLUSION

We present MPChecker, the first MPC vulnerability detection tool

for distributed systems. MPChecker applies a log-based analysis

to infer use- and system-related variables, whose accesses are priv-

ileged operations. We have evaluated MPChecker with 6 widely-

used distributed systems. The tool reports 44 new critical vulner-

abilities from 6 popular distributed systems, including 1 severe

security flaws with details undisclosed to public.
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