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Abstract—Static analysis tools, although widely adopted in
industry, suffer from a high false positive rate. This paper aims
to refine the results of static analysis tools, by automatically
searching for a vulnerable path from given defect report. To
realize this goal, we develop SATRACER, a novel tool which
integrates symbolic execution techniques with static analysis.
SATRACER selectively skips those program parts which can be
consistently updated by static analysis, thus drastically improving
performance. We have applied SATRACER to a set of 21 real-
world applications. Evaluation results show that SATRACER can
successfully remove 71.4% false alarms reported by a commercial
static analysis tool in 10 hours, and confirmed 29 real use-after-
free bugs and 895 real null-pointer-dereference bugs.

Index Terms—static analysis, symbolic execution

I. INTRODUCTION

Static analysis has been widely adopted in detecting soft-
ware vulnerabilities. There are many commercial and open
source static analysis tools available [1]–[3]. Those tools apply
various approximation and abstraction techniques so as to
analyze large programs and detect defects efficiently. Such
approximations successfully scale static analysis tools to large
real-world applications with millions of lines of code (LOC).
However, they may also bring in many false positives.

We aim to refine the results of static analysis tools, by
automatically searching for a vulnerable path from a defect
report. A defect report commonly consists of a source as the
starting point, a sink as the bug exposing statement, and a few
key steps to trigger or help understand the root cause of the
bug. Given such information, we further extract a step-by-step
path which is highly likely to trigger the reported defect. Thus,
a reported defect is regarded as a true bug if a corresponding
vulnerable path is identified. Otherwise, it is likely to be a
false positive.

Symbolic execution [4]–[6] is a promising technique to
realize our goal. However, traditional symbolic execution
techniques suffer from the path explosion problem. These tech-
niques systematically inspect every program path. Although
precise, they cannot scale to large real-world programs which
often have billions of program paths to be explored.

Hence, we propose a lightweight solution which mixes
symbolic execution together with static analysis. Our approach

∗Corresponding author.

explores program paths in a similar fashion to symbolic
execution. For efficiency, instead of systematically exploring
all program paths, we start symbolic execution from the
entry function of the source of a defect and selectively skip
some program parts during symbolic execution. For those
skipped parts, the symbolic execution state is consistently
updated according to static analysis results. There are two key
questions to be addressed:

• Which program parts can be skipped ?
Ideally, we wish to skip program parts without loss of
precision. In practise, alias is one of the main sources
of imprecise analysis results. Hence, we skip exploring
the callee function of a method invocation if it does not
introduce suspicious aliases (i.e., resulting in one pointer
with multiple incoming values).

• How to update symbolic state with static analysis?
We design an abstract symbolic state in such a way that
each pointer points to at most one target. To consistently
update the symbolic state with static analysis, we main-
tain a mapping between heap objects during symbolic
execution and abstract locations in static analysis: ab-
stract location O uniquely pointed to by variable x is
consistently mapped to l, where l is the heap location
x referring to during symbolic execution. The symbolic
state then can be updated by interpreting each instruction,
or by static analysis results (Section III-B).

We develop SATRACER (a static-analysis based symbolic
execution tool), to automatically expose vulnerable paths from
a defect report. Given a defect report, SATRACER performs
path exploration from the source of the defect report. To help
speed up symbolic execution, a classic context- and flow-
sensitive pointer analysis [3] is applied to the underlying
program. We maintain an abstract symbolic state where each
pointer must only point to at most one target. Those function
call statements are skipped if their static analysis results
follow the same property of the symbolic state. To the end,
SATRACER reports a confirmed bug if a vulnerable path from
source to sink is identified within the given time frame.

We have evaluated SATRACER using Juliet test suite [7],
and an extensive set of 21 real-world applications. In our
evaluation, we firstly generate a set of bug reports from a
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commercial static tool, then apply SATRACER to search a
bug trace for each bug report. Experimental results show that
SATRACER can effectively filter 71.4% of false alarms in less
than 10 hours. In addition, we manually confirmed 29/41 real
use-after-free bugs and 895/939 real null-pointer-dereference
bugs from bug traces searched by SATRACER. There are 2,055
likely false alarms1 filtered by SATRACER.

The contribution of this paper is as follows.

• We propose a novel methodology which successfully
integrates static analysis with symbolic execution tech-
niques. We show how symbolic execution results can be
consistently updated with static analysis.

• We implement a new tool SATRACER, to automatically
extract a vulnerable program path from a defect report
given by static analysis tools. SATRACER selectively
skips those program parts which can be consistently
updated by static analysis, thus drastically improve per-
formance.

• We applied SATRACER to a set of 21 real-world appli-
cations. The tool is effective at finding 924 real bugs
out of 3,858 defect reports, effectively filtering 2,055
false alarms within 10 hours. It can significantly improve
precision of defect reports from static analysis tools:
95.21% null-pointer-dereference bug traces and 70.7%
user-after-free bug traces are confirmed as real bugs.

The rest of the paper is organized as follows. Section II
overviews our approach using an example. We formally de-
scribe technical details of SATRACER in Section III and
evaluate it in Section IV. Section V reviews related paper,
and Section VI concludes this paper.

II. MOTIVATION

A. An example

We informally describe SATRACER using the example in
Figure 1(a). The example is simplified from lib/fts-cycle.c in
Coreutils [8]. There are two main functions: hash_add()
(lines 22 - 28), and hash_insert() (lines 6 - 21). The
hash_insert() function tries to insert entry into the
global variable hash_table: the function get_table()
is invoked at line 7 and returns hash_table to pointer
table. The loop from lines 9 -14 iterates through the table
for an available slot. If it succeeds, entry is inserted into
hash_table and stored to parameter matched (line 17).
The function then returns 0 (line 18). Otherwise, it returns 1
(line 20) to indicate insertion failure.

Function hash_add() allocates a new memory object
in (line 23) and invokes hash_insert() to insert it into
hash_table (line 25). The object is freed if insertion fails
(line 26), otherwise the object is returned via pointer added.

a) The bug report:

Definition 1. A defect report is a triple <Source, Sink, {Step}>,
where Source is the start point of the defect, Sink is the instruction

1We examined 100 of them and confirmed that they were false positives.

exposing the defect, and {Step} is a set of key instructions
triggering the defect.

Static analysis tools may report a use-after-free bug
<23, 27, {26}>, due to false alias between in and added. Line
23 is the source location where an object is allocated, the
object is then freed at line 26 (as a key step in the bug report),
and used at line 27 (as sink triggering the bug).

The false alarm arises due to false alias relation - after
invoking function hash_insert(), both in and added
may point to the object created at line 23. Hence, it looks like
a use-after-free bug since the object is freed at line 26 and used
at line 27. However, alias only holds if insertion succeeds and
the function call returns 0. As a result, added is NULL instead
of pointing to the freed object and a bug cannot be triggered
at line 27.

b) Challenges: This example, although conceptually
simple, reveals key challenges for static analysis tools: alias
and path-sensitivity. To avoid such false alarms, tools need to
infer the precise relation that “in alias with added only if
err==0”. How to precisely track alias together with precise
path conditions (i.e., path-sensitive alias analysis) remains an
open research question.

Value-flow based approaches with path-sensitive exten-
sions [9]–[11] can extract some path information (based on
control dependencies) and mitigate the problem to a certain
degree. However, it is very challenging, if not impossible, to
precisely track all useful path conditions inter-procedurally.
As in our example, tools need to analyze that the variable
ret is set to a distinct value upon different alias relation, and
propagate those information throughout the program. It can be
much more complex for real-world applications, with millions
of variables and alias relations. Frequently, compromises are
made, which result in false positives or false negatives. As
an illustration, we modify the condition "(err != 0)" in
line 26 to its opposite condition "(err == 0)" (highlighted
in Figure 1(a)), which will reveal a true use-after-free bug.
Neither SVF (the state-of-the-art value-flow based tool) nor
Infer (a static analysis tool from Facebook) can successfully
report a bug in this case, suggesting unsound trade-offs and
sacrificed ability in those tools.

B. The SATRACER approach.
We address the above challenges in two steps: firstly, we

employ a conservative tool to report as many bugs as possible;
secondly, we refine the reported results by precisely checking
path conditions against each reported bug. This is realized in
SATRACER by searching for a bug trace for each reported
defect. A bug trace is a feasible program path highly likely to
trigger a reported bug, as defined below:

Definition 2. The bug trace for bug <Source, Sink, {Step}> is
a feasible bug-triggering program path from Source to Sink,
with some or none instructions in {Step} to trigger the buggy
condition.

Figure 2 overviews SATRACER, which comprises three
phases as illustrated below.
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1. char * hash table [10]={NULL};
2. char * get table (...) {
3. ......
4. return hash table ;
5. }
6. int hash insert(char* entry ,char** matched){
7. char* table = get table (...) ;
8. int last = 11, retval = 1;
9. for ( int index = 0;index < 10; index++){

10. if ( ! table [index] ){
11. last =index;
12. break;
13. }
14. }
15. if ( last < 10){
16. table [ last ] = entry ;
17. *matched = entry;
18. retval = 0;
19. }
20. return retval ;
21. }
22. void* hash add(){
23. char* in = (char*)malloc(1);
24. char* added=NULL;
25. int err = hash insert( in , &added);
26. if ( err != 0 ) free ( in ) ;
27. return added;
28. }

err == 0

(a) An example (c) Value flow graph. (d) Paths explored.

(b) Inter-procedural control-flow graph in memory-SSA.

Fig. 1: A motivating example simplified from lib/fts-cycle.c in CoreUtils.

Symbolic Execution 
Engine

Value Flow 
Analyzer

Static Analysis 
Tool

Defect
Report

Bug
Trace

Source codes

Fig. 2: Structure of SATRACER.

• Step1: Static Analysis Tool We leverage an off-the-shelf
commercial tool for initial bug reporting. The tool reports
a use-after-free bug <23, 27, {26}> for our motivating ex-
ample in Figure 1(a).

• Step2: Value-flow Pointer Analysis We adopt existing
value-flow based pointer analyses [12], [13] to build
a flow- and context-sensitive value-flow graph for the
program under analysis. The program is firstly translated
into memory-SSA [13] (Section III-A1), then a context-
and flow-sensitive value flow graph (Section III-A2)
is constructed in a standard fashion. Figure 1(b) and
Figure 1(c) give the memory-SSA representation and the
value flow graph for our motivating example, respectively.
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The value-flow graph captures def-use chains (both intra-
and inter-procedurally) for all pointer variables in the
program.

• Step3: Path Exploration This is the key step and is
also the key contribution of this paper. From the source
point, we explore for a vulnerable path to the sink. During
path exploration, we maintain a symbolic program state.
The symbolic program state is updated when executing an
instruction (as in classical symbolic execution), or when
skipping a function call. We selectively skips certain
function calls by updating the symbolic state according to
the value flow graph built in Step 2. Figure 1(d) depicts
the program paths explored. If we modify the condition
"err != 0" to an opposite condition "err == 0",
a bug trace will be identified as the path in gray lines.

In Step1, any static analysis tool can be plugged in
SATRACER to refine its results. Hence, we will not discuss
details in initial reporting.

III. METHODOLOGY

We implement SATRACER in LLVM [14] and adopt pre-
vious approaches [12], [13] in building the value-flow graph
of a program. Path exploration is then performed with defect
reports and the context- and flow-sensitive value-flow graph
as inputs.

A. Value-flow Pointer Analysis

Following [3], [12], [13], [15], the value-flow graph is built
upon a memory SSA (single static assignment) [16], [17] form
as illustrated below.

TABLE I: types of instructions, where x, y, k, and z are
variables, c is constant value, op represents binary operators
(with unary operators being its special case), and L denotes
the label for an instruction.

Name Instruction
Allocation x := alloc

Assign x := y | c
Load x := *y
Store *x := y
Call x := F (...)

Return return y
Arithmetic x := y op z

Branch if x goto Lt else Lf
PHI x := φ(x1, x2, ...)

MU µ(x)
CHI x := χ(x)

1) Memory SSA: Without loss of generality, we consider
the set of LLVM instructions in Table I. The top half of the
table are LLVM instructions in the standard SSA form. Note
that here we do not distinguish objects allocated on stack or
on heap (via malloc).

An insensitive Andersen-style pointer analysis [18] is firstly
conducted as a pre-analysis to build SSA, as in [13]. The pre-
analysis computes the following information: pts(p) is the set
of static memory locations pointed to by pointer p, mod(F )

[LOAD]
x := ∗y O ∈ pts(y)
µ(O) ∈ [x := ∗y]µ

[STORE]
∗x := y O ∈ pts(y)
O = χ(O) ∈ [∗x := y]χ

[CALL]
x := F (...) Om ∈ mod(F ) Or ∈ ref(F )

µ(Or), µ(Om) ∈ [x := F (...)]µ Om = χ(Om) ∈ [x := F (...)]χ
[REF]

Or ∈ ref(F )
µ(Or)∈F ∈ EntryµF

[MOD]
Om ∈ mod(F )

µ(Om)∈F ∈ EntryµF µ(Om)∈F ∈ ExitµF

Fig. 3: Rules to introduce µ and χ functions.

and ref(F ) are the set of F ’s external memory locations
modified and read by function F , respectively.

In memory SSA, we introduce two additional functions
µ and χ, to indicate the potential implicit uses and defs of
memory allocations for each instruction. For instruction S,
we use Sµ and Sχ to denote the set of µ and χ instructions
introduced for S, respectively. Sµ is inserted immediately
before S, and Sχ is introduced immediately after S.

Figure 3 gives the standard rules to introduce µ and χ
instructions. Given a load instruction x := *y, for each object
O ∈ pts(y), a µ(O) instruction is introduced (rule [LOAD]).
Similarly, each store instruction ∗x := y is annotated with a
list of χ instructions, where an instruction O := χ(O) denotes
an indirect update to object O pointed to by y (rule [STORE]).

At function call-sites, µ and χ instructions are introduced
to propagate implicit uses and defs of memory allocations
inter-procedurally. This is realized by the three rules: [CALL],
[REF], and [MOD]. For each object Or ∈ ref(F ), a µ(Or)∈F
instruction is introduced at the entry of function F (rule
[REF]), and a corresponding µ(Or) instruction is introduced
at its call-site x := F (...) (rule [CALL]). For each object
Om ∈ mod(F ), a µ(Om)∈F function is introduced at both
entry and exit of function F (rule [MOD]), and corresponding
µ(Om) and Om = χ(Om) instructions are inserted before
and after its call-site x := F (...) (rule [CALL]), respectively.
Conceptually, the introduced µ and χ functions at function
call-cites and function entry/exit act as extended parameters
and return values of function F , to explicitly express inter-
procedural indirect uses and defs of F , just like pass-by-value.

a) Memory-SSA example: After introducing µ and χ
instructions, memory-SSA is then built using the standard SSA
algorithm [19]. Figure 1(b) shows our example in memory-
SSA. We label each instruction following its corresponding
source line location, e.g., the statement at line 25 results in
5 instructions in memory SSA form, labeled from 25.1 to
25.5. The instruction 24.2:*added := NULL introduces
”24.3 : Oadded := χ(Oadded)”, since Oadded is pointed to
by added. Note that SSA will rename the instruction to
”Oadded1 := χ(Oadded0 )”. Given that mod(hash_insert) =
{Oadded,Ohash_table}, µ(Oadded) and µ(Ohash_table) are in-
troduced at the entry (7.1 - 7.4), exit (20.4 and 20.5), and
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[COPY]

x := y

x←↩ y

[PHI]

x := φ(y0, y1)

x←↩ y0 x←↩ y1
[LOAD]

x := ∗y µ(O) ∈ [x := ∗y]µ

x←↩ O
[STORE]

∗x := y O′ := χ(O) ∈ [∗x := y]χ
O′ ←↩ y O′ ←↩ O

[CALL]

l : x := F (..., qj , ...)

PARF (qj)
(1←↩ qj x

)l←↩ RETF
[CALLMU]

l : x := F (...) µ(O) ∈ [x := F ]µ µ(O)∈F ∈ EntryµF
O∈F

(l←↩ µ(O) µ(O)←↩ O
[CALLCHI]

l : x := F (...) O′ := χ(O) ∈ [x := F ]χ µ(O)∈F ∈ ExitµF
O′

)l←↩ µ(O)∈F µ(O)∈F ←↩ O∈F

Fig. 4: Value flow rules.

call-sites of function hash_insert (25.1 and 25.2). Here
we also introduce pseudo instructions 7.1 : Oadded = ...
and 7.3 : Ohash_table = ... to make it a valid SSA form.
In addition, 25.4 : Oadded := χ(Oadded) and 25.5 :
Ohash_table := χ(Ohash_table) are inserted after the call to
hash_insert.

2) Value Flow Graph: With the annotated µ and χ func-
tions, the value flow graph is then built flow-sensitively in
a standard fashion. The value flow edge y ←↩ x represents
a dependence (i.e., a def-use relation) between x and y. In
addition to the def-use chains provided by LLVM’s SSA, value
flow edges are also introduced for indirect def-uses, as shown
in Figure 4.

Value flow edges are straight-forwardly introduced for direct
assignments via rule [COPY] and rule [PHI]. In [LOAD], the
implicit use of memory allocation O is connected to the load
instruction. In [STORE], O′ ←↩ O signifies a weak update to O
and such edge can be eliminated if a strong update is possible
(i.e., when the stored value uniquely points to a singleton
object O). The rule [CALL] encodes the standard pass-by-value
semantics, where PARF (qj) is F ′s corresponding formal
parameter for actual parameter qj , and RETF is F ′s return
value. Note that inter-procedural value flows are annotated
with call-site labels for context-sensitivity.

Rule [CALLMU] and rule [CALLCHI] introduce indirect inter-
procedural value flows into and returning from callee func-
tions, respectively. At a function call-site l : x := F (...), for
each memory allocation O used in F , the two value flows

O∈F
(l←↩ µ(O) and µ(O) ←↩ O are introduced. As such, O

is explicitly passed to O∈F via an extended parameter µ(O).
Similarly, for each memory allocation O modified in F , the

two value flows O′
)l←↩ µ(O)∈F and µ(O)∈F ←↩ O∈F are

introduced to return O∈F to its corresponding caller value O′,
via an extended return value µ(O)∈F . By definition, O∈F is
an object modified in F (µ(O∈F ) ∈ ExitµF ). Here the labels
(l and )l are annotated on inter-procedural value flow edges

[SUM]

l : x := F (..., qj , ...) RETF  PARF (qj)

x
l←↩ qj

[SUMPAR]

l : x := F (..., qj , ...) O′
)l←↩ µ(O′)∈F O′∈F  PARF (qj)

O′
l←↩ qj

[SUMRET]

l : x := F (..., qj , ...) O∈F
(l←↩ µ(O) RETF  O∈F

x
l←↩ µ(O)

[SUMEXD]

l : x := F (...) O∈F
(l←↩ µ(O) O′

)l←↩ µ(O′)∈F
O′∈F  O∈F

O′
l←↩ O

Fig. 5: Summary rules.

for matched context-sensitivity at call-site l.
a) Value flow summaries: In our analysis, we introduce

four more additional rules to summarize the value flows in
callee functions. We use the notation y  x to denote that
there is a realizable path from x to y in the value flow
graph, where matched context-sensitivity is expected. Figure 5
presents the summary rules.

Rule [SUM] summarizes a realizable value flow path from
F ′s parameter to its return value (RETF  PARF (qj)),

by introducing a summary edge at its call-site, i.e, x
l←↩ qj .

Here the summary edge is marked with a call-site label l. The
rest 3 rules [SUMPAR], [SUMRET], and [SUMEXD] handle indirect
inter-procedural value flows in different cases. In a nut shell,
[SUMPAR], [SUMRET], and [SUMEXD] summarize indirect value
flows from parameter to indirect return value, from indirect
input to return value, and from indirect input to indirect return
value, respectively.

b) Value flow graph example: The value flow graph
of our example is given in Figure 1(c). For illustration,
We label each node with its corresponding instruction la-
bel, e.g., variable in at line 23 is represented as a node

numbered 23. Let us study the value flow path 25.5
)25.3←↩

20.4 ←↩ 20.1 ←↩ 17.2 ←↩ 6
(25.3←↩ 23, as highlighted in

Figure 1(c). Edge 6
(25.3←↩ 23 is introduced at the call-site

25.3:err := hash_table(in, added), which pass
parameter 23:in := alloc to function hash_insert’s
formal parameter (6:entry := ...). Next, instruc-
tion 17.1:*matched:=entry and 17.2:Oadded1 :=
χ(Oadded0 ) generate the edge 17.2 ←↩ 6 (i.e., Oadded1 ←↩
entry) by rule [STORE]. Edge 20.1←↩ 17.2 is introduced at
instruction 20.1:Oadded2 := φ(Oadded0 ,Oadded1 ) according to
rule [PHI]. Finally, given that 25.5:Oadded2 := χ(Oadded1 ) ∈
[25.3:...]χ, and 20.4:µ(Oadded2 ) ∈ Exitµhash_insert,

the two value flow edges 25.5
)25.3←↩ 20.4 ←↩ 20.1 are

introduced by rule [CHI].
According to the summary rule [SUMPAR] (Figure 5), the

value flow path 25.5
)25.3←↩ 20.4 ←↩ 20.1 ←↩ 17.2 ←↩
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TABLE II: symbolic states. l is location, c is constant value, t
is top-level variable in SSA, lc is location l with offset c, and
tς is a symbolic value introduced for variable t.

Heap H ::= l 7→ o
Objects o ::= c 7→ v
Stack S ::= t 7→ v
Values v ::= ς | lc
Symbolic expression ς ::= c | tς | ς op ς
Constraint lists Σ ::= ∅ | Σ, ς | Σ,¬ς

6
(25.3←↩ 23 is summarized as 25.5

25.3←↩ 23, indicat-
ing that in is stored to Oadded2 by the call instruction
25.3:err := hash_table(in, added).

B. Path Exploration

Given a defect triple <Source,Sink,{Step}>, we perform path
exploration from the Source. More precisely, from the entry of
FSource where FSource is function of Source.

1) Symbolic States: Table II presents the symbolic state. We
maintain a symbolic state for each distinct path. The symbolic
state consists of a heap H , a stack S, and a constraint list Σ.
The heap H maps memory locations to objects, and the stack
S consists a set of local variables. Constraints Σ are introduced
at conditional branches, when symbolically executing a path.
For clarity of presentation, we regard stack and global objects
as also managed by the heap H and do not distinguish local
variables in different stack frames. Stack objects and local
variables will be automatically reclaimed when returning from
the stack frame.

An object o is a map from constant offsets to values.
Values are symbolic expressions ς or locations lc. A symbolic
expression ς can be a constant value c, an introduced symbolic
value tς , or a binary operation of two symbolic expressions.
A location lc denotes the location with offset c to memory
location l. For simplicity, we do not model symbolic locations
and offset to a memory location is always concretized.

2) Updating Rules: Figure 6 gives the standard semantic
rules when symbolically executing a instruction. In [ALLOC],
for the allocation instruction x := alloc, we create a new
location in Heap H , and the value of x is set to l0. The
two rules [ASSIGN] and [ARITHMETIC] update the value of the
resulting variable. Note φ instructions are evaluated by rule
[ASSIGN], since its incoming value is uniquely identified during
path exploration.

Rule [LOAD] and [STORE] perform standard heap lookups and
updates, respectively. In [LOAD], an heap lookup for x := ∗y
is only performed if the location lc (referred by y) is in heap
H . The case where c /∈ H[l] is handled by rules with static
analysis integration, as discussed in the following section. In
rule [STORE], if c /∈ H[l], the location lc is lazily initialized in
H and updated.

In [CALL], the stack is updated by copying values of actual
parameters to formal parameters of the callee function, and
execution continues from the entry of the callee function. In
[RETURN], the return value is returned to the caller and local
variables (yF ∈ F ) and local stack objects (lF ∈ F ) are

[ALLOC]

x := alloc l /∈ dom(H) H ′ := H, l 7→ o

HSΣ→ H ′S[x 7→ l0]Σ
[ASSIGN]

x := y

HSΣ→ HS[x 7→ S[y]]Σ

[ARITHMETIC]

x := y op z

HSΣ→ HS[x 7→ S[y] op S[z]]Σ
[LOAD]

x := ∗y y 7→ lc c ∈ dom(H[l])

HSΣ→ HS[x 7→ H[l][c]]Σ
[STORE]

∗x := y x 7→ lc H[l]′ := H[l] \ c, c 7→ S[y]

HSΣ→ H[l 7→ H[l]′]SΣ
[CALL]

x := F (..., k, ...)

HSΣ→ HS,PARF (k) 7→ S[k]Σ
[RETURN]

x := F (...) lF ∈ F yF ∈ F
H ′ := H \ lF S′ := S \ yF
HSΣ→ H ′S′[x 7→ S[REFF ]]Σ

[BRANCHT]

if x goto Lt... x 7→ ς

HSΣ→ HSΣ, ς

[BRANCHF]

if x ... else Lf x 7→ ς

HSΣ→ HSΣ,¬ς

Fig. 6: Symbolic execution semantics.

discarded. Finally, a branch instruction will fork two states,
one for the true target (rule [BRANCHT]) and one for the false
target (rule [BRANCHF]), to explore both targets. The constraint
list is updated accordingly.

3) Static analysis integration: Figure 7 gives the rules. Rule
[INIT] initializes symbolic states by assigning a value to each
parameter of the entry function FSource. A new label l is
assigned to each pointer parameter, and a symbolic value is
given to each non-pointer parameter.

Rule 1. If variable x points to abstract location O only, then
O maps to a unique location of value x.

In addition to the symbolic state in Table II, we maintain
an additional map M := O 7→ l, which maps static analysis
object O to a unique location l in symbolic heap H . Following
Rule 1, the deduction rules [MAP] and [CHI] updates the map
from direct assignments, and from strong updates (i.e., {O′ :=
χ(O)} == {[∗x := y]χ} and O′ 6←↩ O), respectively.

We apply lazy initialization [20], [21] when the instruction
x := ∗y loads from a new location not in the heap. There are
3 different cases: 1) rule [LOADVAL] handles the case when x is
a non-pointer value, heap H is lazily initialized with the new
location and x is given a symbolic value; 2) in rule [LOADPTR],
x is a pointer value pointing to an untracked object O, heap
H is lazily initialized a new label l′ pointing to an empty
object; 3) in rule [LOADPTRM], x is a pointer value pointing
to a tracked object O (i.e., O ∈ dom(M), x is assigned the
tracked value of O, i.e,. H[M[O]].

Rule 2. For any value k returned from function call x :=
F (...), i.e, x and O′ := χ(O) ∈ [x := F (...)]χ , we skip
symbolically executing the function call if there is only one
summary value flow edge to k. The symbolic state is then
consistently updated by value flow summaries.
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[INIT]

x, y ∈ PARFSource
ptr(x) ¬ptr(y)

∅∅∅ → {l 7→ o}{x 7→ l, y 7→ ς}∅
[MAP]

{x := alloc|y|yopz|φ(...)} x  O 6 ∃O′|x  O′ S[x] 7→ l0
M →M,O 7→ l0

[CHI]

{O′ := χ(O)} == {[∗x := y]χ} O′ 6←↩ O
M →M,O′ 7→ S[x], O 7→ S[x]

[LOADVAL]

x := ∗y y 7→ lc c /∈ dom(H[l])
H ′ := H[l 7→ H[l], c 7→ ς]

HSΣ→ H ′S[x 7→ ς]Σ
[LOADPTR]

x := ∗y y 7→ lc c /∈ dom(H[l]) l /∈ dom(H)
x←↩ O O /∈ dom(M)

H ′ := H[l 7→ H[l], c 7→ l′], l′ 7→ {}
HSΣ→ H ′S[x 7→ l′]Σ

[LOADPTRM]

x := ∗y y 7→ lc c /∈ dom(H[l])
x←↩ O O ∈ dom(M)

H ′ := H[l 7→ H[l], c 7→ H[M [O]]

HSΣ→ H ′S[x 7→ H[M [O]]]Σ
[SKIP]

l : x := F (...) O′ := χ(O) ∈ [x := F (...)]χ

|x l←↩ ∗| <= 1 |O′ l←↩ ∗| == 1

skip(l)
[SUMMARY]

l : x := F (...) skip(l) O′ := χ(O) ∈ [x := F (...)]χ

x
l←↩ y O′

l←↩ z
HSΣ→ H[M(O) 7→ S[z]]S[x 7→ S[y]]Σ

Fig. 7: Symbolic execution integrated with static analysis.

According to Rule 2, we skip symbolically executing a
function call if it does not introduce spurious alias, i.e., there
exists only one incoming value flow edge to all values (more
precisely, to values related to the reported defects) returned
(directly or indirectly) from the function call. Rule [SKIP]

handles this particular case. The skipped function call is
updated by rule [SUMMARY], where the return value can be
consistently updated by its unique incoming value. Note that
in this rule, we do not elaborate the detailed cases when the
incoming value is a static object O. In that case, the return
value is similarly updated as rule [LOADPTR] and [LOADPTRM].

C. SATRACER

Figure 1(d) summarizes the entire process and illustrates the
explored paths for our motivating example. For clarity, we do
not list all traversed instructions, and each node is labeled with
the first instruction of a traversed basic block in Figure 1(b).

From the start, we have the initial state ∅∅∅. The instruction
24.3:Oadded1 := χ(Oadded0 ) strong updates Oadded1 . Hence,
we can infer that Oadded1 has same value as added. The in-
struction 25.3:err := hash_insert(in,added) in-
troduce two summary edges to 25.5:Oadded2 := χ(Oadded1 ),
i.e., 25.5

25.3←↩ 23 and 25.5
25.3←↩ 25.1. Thus, the func-

tion call cannot be skipped and we symbolically exe-
cute the callee function from 6:entry := .... At in-
struction 7.5:table := get_table(...) , the return
value table has one unique incoming value 7.5

7.5←↩ 1 and

the function call is skipped. Consequently, table is updated
by hash_table.

In this example, there is no bug trace for the defect report
<23,27.3,{26}>. However, if we modify the error condition
"(err !=0)" to "(err == 0)" (line 26 in Figure 1(a)),
a bug trace is identified as in dashed lines (distinct parts
highlighted).

D. Implementation

We adopt traditional optimizations and trade-offs for sym-
bolic execution in SATRACER, as summarized below:
• Slicing. Given a defect report <Source, Sink, {Step}>, we

slice the program by eliminating instructions without
transitive data- or control-dependences to Source, Sink,
and {Step}. This optimization reduces memory usage by
13.05%, and improves runtime performance by 9.03%.

• Path traversal heuristics. We implement different path ex-
ploration strategies, including the default strategy which
always explores the false target first, and a distance-
guided heuristics which makes decisions based on the
distance (in number of block) to sink.

• loop Unrolling. Loops are simply handled by unrolling a
loop for at most 3 times.

• Constraint simplification. We only consider constraints
introduced by common arithmetic and comparison oper-
ations, complex operations such as bit-level operations
are omitted for better performance.

• Bounding Computational Resources. We bound the time
of SATRACER in tracing a defect report. By default, it is
10 secs. Furthermore, the maximal search depth is limited
to 500 basic blocks to avoid path explosion.

IV. EVALUATION

We evaluate the effectiveness and efficiency of SATRACER
by applying it to trace use-after-free and null-pointer-
dereference bugs reported by a static analysis tool. Two set of
benchmarks are used in our evaluation: 1) the Juliet test suite,
and 2) a set of 21 real-world open source applications (Ta-
ble IV). We compare the results of SATRACER with ClangSA,
the Clang static analyzer. All our experiments are conducted
on a platform with 2 Intel Xeon Gold 6230@2.10GHz CPUs
and 512GB memory.

A. Juliet Test Suite

TABLE III: Experiment results on the Juliet test suite.

#CWEID #Testcases2 SATracer ClangSA
#Potential #TP #FP #TP #FP

CWE416 393 395 388 0 18 0
CWE476 288 149 148 0 151 0

Total 681 544 536 0 169 0

The Juliet test suite consists of a large collection of dif-
ferent types of small defect programs (each defect program

2Without Windows specific and null-check-after-use cases.

447

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on October 18,2022 at 07:31:58 UTC from IEEE Xplore.  Restrictions apply. 



is often accompanied with a correctly fixed version), and is
widely used in evaluating bug detection tools. We evaluated
SATRACER using the 2 defect types: CWE 416 (use-after-
free), and CWE476 (null-pointer-dereference).

Table III summarizes the results. In total, there are 681
test cases (Column 2) and the static analysis tool generates
a total of 544 defect reports (Column 3), including 395 use-
after-free and 149 null pointer dereference bugs. Among the
544 reports, SATRACER identified a bug trace for 536 reports
(Column 4), successfully removing 8 false alarms. Overall,
SATRACER reports 388 use-after-free bugs and 148 null-
pointer-dereference bugs, with no false positives. In com-
parison, ClangSA reports much less use-after-free bugs (18)
and more null-pointer-dereference bugs (151), with no false
positives. The reason that ClangSA is able to report more null-
pointer-dereference bugs is because the underlying commercial
tool reports a null-pointer-dereference bug only if the tool
identifies a propagation path from the constant null value to
a variable being dereferenced. On the other hand, ClangSA
adopts a heuristics and regards a variable as a potential null
value if this variable has been null checked.

B. Real-world Applications

Table IV reports the results over a set of 21 real-world
applications. Sizes of those applications range from 5 KLOC
(wrk) to 309 KLOC (httpd), with a total of 1,666 KLoc
(Column 2). The static analysis tool reported 904 use-after-
free bugs (Column 3) and 2,954 null-pointer-dereference bugs
(Column 8) in the 21 applications. From this initial set of
potential bugs, we report the number of true bug traces (TP),
false bug traces (FP), memory usages, and analysis times of
SATRACER. The analysis time includes the time in building
the context- and flow-sensitive value flow graph, as well as the
time in symbolically exploring a bug trace. In this experiment,
we trace each defect report with a time limit of 10 seconds by
default, and give each benchmark a time budget of 2 hours.
For each benchmark, we run SATRACER for at least 3 times
and report the average data over the 3 runs.

Overall, SATRACER successfully identified 29 real use-
after-free (Column 4) and 895 real null-pointer-dereference
(Column 9) bug traces, effectively removing 71.4% of the
false alarms from the static analysis tool. We examined 100
reports without bug trace and confirmed that they were all
false positives. There are also 12 false use-after-free (Column
4) and 45 false null-pointer-dereference (Column 9) bug
traces, with an overall false positive rate of 5.88% (29.3%
for use-after-free bugs and 4.79% for null-pointer-dereference
bugs). Those 57 false positives are due to unresolved path
conditions (e.g., bitwise operations, library calls, and pointer
operations) and complex data structures (e.g., red-black tree
and double linklist). The memory consumption (Column 5 and
10) and time cost (Column 6 and 11) in Table IV present the
performance of SATRACER on each application.

Compared to ClangSA, SATRACER reports much more real
bugs, including 22 more use-after-free bugs (Columns 4 and
7) and 861 more null-pointer-dereferences bugs (Columns 9

and 12), with a much lower false positive rate (5.88% of
SATRACER vs 84%of ClangSA).

1) Implementation Trade-offs: We discuss and evaluate dif-
ferent implementation trade-offs in SATRACER. We compare
different trade-offs in terms of their impact to efficiency and
effectiveness, reflected as the percentage of timeouts and the
precision of bug traces.

Figure 8(a) and Figure 8(b) compare the results under
different time limits in tracing a potential use-after-free or null-
pointer-dereference bug, respectively. As time limits increase
(from 5s to 100s), the number of timeouts drops noticeably,
with a steady increase on number of identified traces and
number of confirmed false positives. The false positive rates
of bug traces only vary slightly.

Figure 8(c) and Figure 8(d) study different design trace offs.
The 4 configurations differ from default as follows: priority
uses a different path traversal strategy which favors a branch
target with shorter distance to sink, no-slice does not perform
slicing, no-step-in always updates function call results with
static analysis summaries, stepin performs symbolic execution
without skipping function calls.

There are only slight differences between priority to de-
fault. Compare default with no-slice. The number of timeouts
in no-slice is noticeably larger, increasing from 13.85% to
19.26% for null-poiter-dereference bugs. Overall, the slice
optimization can effective reduce memory usages by 13.05%,
and improve runtime performance by 9.3%. Finally, in the no-
step-in configuration, the precision drops significantly, due
to imprecise static analysis summaries. Compare default to
step-in, the number of timeouts increases significantly, from
45.8% to 63.4% for use-after-free bugs (Figure 8(c)), with
very slight differences on bug trace precision. This suggests
that SATRACER can significantly improve symbolic execution
performance with summarized static analysis information,
while preserving same level of precision.

C. Case Study In Real-World Applications

We manually examined all 951 bug traces produced by
SATRACER, to confirm whether it is a real bug or a false
positive. Two studies, one true positive and one false positive,
are presented in this section for detailed discussion.

1) A true positive case: Figure 9 presents a new use-
after-free bug from CoreUtils (lib/fts.c) which has never been
reported before. For clarity, we only show the key bug-
triggering steps with many details (e.g., path condition vari-
ables) skipped. To help understand the bug triggering path, we
highlight relevant value flows in the graph, with solid lines for
direct value flows, and dashed lines for indirect value flows.

The bug is triggered as follows. First, the function
fts_alloc is invoked at line 1475, which returns a newly
created memory object (line 1923) with field p->fts_path
set by sp->fts_path, i.e., the two fields point to a same
object. Next, at line 1481, the conditional test checks for return
value of fts_palloc. In function fts_palloc, line 1981
frees sp->fts_path via realloc then immediate reset it
at line 1987. Finally, although sp->ftp_path is reset, the
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TABLE IV: Experiment results on 21 real-world applications.

Project
Lines USE AFTER FREE NULL POINTER DEREFERENCE

SATracer ClangSA SATracer ClangSA

(Klocs) Pt. TP./FP. Memory Time TP./FP. Pt. TP./FP. Memory Time TP./FP.(MB) (sec.) (MB) (sec.)
wrk 5 0 0/0 102 13.63 0/0 30 3/3 115 14.53 0/3
bzip2 6 1 0/0 93 14.18 0/0 4 0/0 1,422 522.49 0/0
memcached 12 4 0/0 326 23.04 0/1 95 23/2 437 302.37 0/9
mujs 15 1 1/0 2,532 32.10 0/0 32 0/0 5,716 282.35 0/0
less 20 29 0/2 718 84.71 0/2 78 13/0 18,808 82.16 1/0
icecast 21 60 5/0 663 192.28 0/0 403 278/0 1,555 392.44 0/2
shadowsocks 26 7 1/0 1,726 385.32 0/21 66 1/2 1,679 102.18 0/19
darknet 29 83 0/4 953 504.69 0/0 563 264/0 1,077 312.41 4/2
sed 33 10 4/0 123 65.99 3/1 1 0/0 134 42.11 0/3
gzip 43 1 0/0 973 1014.49 0/1 1 0/0 294 52.10 0/0
make 44 54 0/0 3,523 1105.89 0/1 12 0/0 1,736 796.84 0/11
goaccess 51 82 1/2 664 222.38 4/1 101 11/1 523 72.15 0/15
grep 81 17 3/0 248 86.92 0/0 48 18/0 467 196.89 9/10
tar 83 90 5/1 2,114 645.91 0/1 214 6/6 1,450 907.19 0/17
sendmail 95 25 0/0 4,320 193.76 0/0 37 1/2 3,505 566.118 0/21
bison 104 34 0/0 1,535 904.84 0/0 43 0/4 1,502 312.39 0/12
bash 113 200 0/0 4,965 7199.01 0/1 337 26/1 35,322 2724.76 14/36
curl 145 17 1/2 3,193 512.63 0/0 22 0/2 12,083 692.76 0/8
gnugo 209 10 0/0 5,330 232.28 0/0 140 81/0 6,066 482.53 0/5
coreutils 222 171 5/0 6,619 1623.60 0/0 267 12/0 3,227 1763.72 0/25
httpd 309 8 3/1 563 102.19 0/1 460 158/16 30,368 5407.67 6/29
summary 1666 904 29/12 - 4.21(h) 7/31 2954 895/45 - 4.45(h) 34/227
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Fig. 8: Results with different implementation trade-offs.

field p->fts_path still points to the freed object. Following
the two-headed arrow lines, p is returned to its caller and any
successive access to p->fts_path triggers an error.

2) A false positive case: Figure 10 gives a false bug
trace extracted from tar-1.32/lib/wordsplit.c. The sub-path
1©  2©  3© is highlighted in the bug trace. First, in
the first iterator of the loop, p is assigned the value given
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1300. FTSENT* fts build (register FTS* sp, int type){
1475. p = fts alloc ( sp , dp−>d name, d namelen);� �

1913. static FTSENT* fts alloc (FTS* sp, ...)
1914. {

...
1923. if (( p = malloc(len) ) == NULL)
1924. return (NULL);

...

1932. p−>fts path = sp−>fts path ;
...

1939. return (p) ;
1940. }

1481. if (! fts palloc (sp , d namelen + len + 1))� �
1966. static bool fts palloc (FTS* sp, size t more)
1967. {

...
1981. p = realloc ( sp−>fts path, sp−>fts pathlen

) ;
...

1987. sp−>fts path = p;
1988. return true ;
1989. }

...
1530. if (ISSET(FTS NOCHDIR)){
1531. p−>fts accpath = p−>fts path ;

...
}

1564. if (head == NULL)
1565. head = tail = p ;

...
1647. if (sp−>fts compar && nitems > 1)
1648. head = fts sort (sp , head, nitems) ;
1649. return (head);
1650. }

Fig. 9: A true positive bug trace from CoreUtils-8.32.

by wsp->wsp_head ( 1©), then it is freed at line 1504. As
a result wsp->wsp_head may point to the already freed
buffer. Then, in the next loop iterations, if the condition test
at line 463 always holds ( 1©  2©  3©), the highlighted
block ( 4©) is never executed to reset wsp->wsp_head, and
it remains to point to the freed buffer. Finally, after the
loop terminates, SATracer report a bug trace revealing the
dangling pointer wsp->wsp_head.

However, the bug trace is not feasible. wordsplit, a data
structure is designed in such a way that the prev field of
the head node wsp->wsp_head is NULL. Hence, in this
case, when removing from the head of the list, we will always
take false branch 4©, which will reset wsp->wsp_head to a
new header whose prev is set to NULL. This false positive
is due to the limitation of SATRACER in modeling input
conditions. The initial introduced symbolic input values cannot
preserve all invariants followed by the system, especially for
data structures such as linked lists and trees.

V. RELATED WORKS

Infer [2] verifies selected properties of a target program by
locally reasoning inference questions in the form of Hoare
triples based on separation logic [22] and bi-abduction [23].
CBMC [24], a bounded model checker, extends model check-
ing techniques to verify memory safety properties. Clang Static
Analyzer [1] performs static symbolic execution within a

1492. static void wsnode nullelim (struct wordsplit *wsp)
{

1494. struct wordsplit node *p;
1496. 1 for (p = wsp−>ws head ; p ;){
1498. struct wordsplit node *next = p−>next;

...
1501. 2 if (p−>flags & WSNF NULL){
1503. wsnode remove (wsp, p);� �

458. void wsnode remove (struct wordsplit * wsp,
struct wordsplit node * node ) {

460. struct wordsplit node *p;
462. p = node−>prev;
463. 3 if (p){
465. p−>next = node−>next;

...
469. 4 }else
470. %wsp−>ws head = node−>next;

. ...
478. node−>next = node−>prev = NULL;
479. }

1504. wsnode free ( p ) ; // wrapper of free
1505. }
1506. p = next ;
1507. }
1508. }

Fig. 10: A false positive bug trace from tar-1.32.

file to detect various bug types including use-after-free and
null-pointer-dereference. FastCheck [9], Saber [13], [25], and
Pinpoint [26] extend value-flow based pointer analyses with
path constraints to detect deep inter-procedural bugs involving
complex aliases. For efficiency, those tools apply various
heuristic approaches together with formal analyses to analyze
large real-world applications.

Symbolic execution tools like EXE [27], KLEE [28] and
Cloud9 [29] have been used in a variety of domains, including
software testing, bug detection, security and software and
protocol verification. There have been several approaches
trying to optimize symbolic execution with static program
analysis. Most of those approaches leverage static analysis
information to provide guidance for more effective path ex-
ploration. For instance, Mayhem [30] static analyzes program
paths containing symbolic address/pointer operations, as a
guidance for path exploration since those are more likely to be
exploited. AEG [31] uses heuristics that prioritize bug paths
and the work [32] proposes to favor program path satisfying
a certain property, such as memory safety. Directed symbolic
execution [33] tries to solve the line reachability (i.e, trigger
a specified line) problem with guided path exploring strate-
gies. WOODPECKER [34], a rule-based directed symbolic
execution tool, applies path slicing to prune redundant paths
irrelevant to given rules.

VI. CONCLUSION

We propose a novel symbolic execution approach integrated
with static analysis, to automatically expose a vulnerable
program path from a defect report. We develop SATRACER
and evaluate it using a set of 21 real-world applications. Eval-
uation results show that the approach is able to significantly
improve symbolic execution performance by consistently up-
dating symbolical results using static analysis information,
while preserve similar precision.
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