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Abstract—Deep learning has been widely adopted in industry
and has achieved great success in a wide range of application
areas. Bugs in deep learning programs can cause catastrophic
failures, in addition to a serious waste of resources and time.

This paper aims at detecting industrial TensorFlow program
bugs. We report an extensive empirical study on 12,289 failed
TensorFlow jobs, showing that existing static tools can effectively
detect 72.55% of the top three types of Python bugs in industrial
TensorFlow programs. In addition, we propose (for the first time)
a constraint-based approach for detecting TensorFlow shape-
related errors (one of the most common TensorFlow-specific
bugs), together with an associated tool, SHAPETRACER. Our
evaluation on a set of 60 industrial TensorFlow programs shows
that SHAPETRACER is efficient and effective: it analyzes each
program in at most 3 seconds and detects effectively 40 out of
60 industrial TensorFlow program bugs, with no false positives.
SHAPETRACER has been deployed in the PLATFORM-X platform
and will be released soon.

Index Terms—TensorFlow Bugs, Constraint Solving

I. INTRODUCTION

Deep learning has been widely adopted in industry. Assisted
by open-source frameworks [1]–[3], developers can efficiently
design new deep learning models for applications in a wide
range of areas [4]–[7], such as image recognition, natural lan-
guage processing, and self-driving cars. To enable developers
to test and train their models effectively, enterprises have built
dedicated platforms, such as Google Cloud AI [8], Microsoft
Azure Machine Learning [9], and Amazon SageMaker [10].
Those platforms are equipped with rich computational re-
sources including GPUs and AI accelerators, running tens of
thousands of deep learning jobs every day.

Like other software applications, deep learning programs
are often plagued by bugs. In a real-world industrial environ-
ment, these bugs often lead to job failures, wasting seriously
resources and time. There are a number of studies [11]–[14]
targeting deep learning program errors. Specifically, Zhang et
al. [12] conducted an extensive empirical study on program
failures of deep learning jobs for Microsoft’s Philly platform.
Sifis et al. [14] developed a new static analysis to detect shape
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errors in TensorFlow programs, which can effectively detect
11 of 14 shape-related TensorFlow bugs studied in [11].

In this paper, we aim at detecting TensorFlow (the dominant
open-source deep learning framework) program bugs in a
real-world industrial environment. We perform an extensive
empirical study on 12,289 failed TensorFlow jobs submitted
to the PLATFORM-X platform by teams in Alibaba Group [15].
Compared to [11], [12], our study focuses on job failures due
to TensorFlow program bugs, and targets a different industrial
platform. Our findings and actions are:
• Finding: Most bugs (63.69%) are common Python bugs,

with argument mismatches, undefined variables, and
missing attributes as the top three types of bugs.

Action: We deployed four existing representative static
tools, Mypy [16], Pylint [17], Pyflakes [18], and
Pytype [19], to detect Python bugs in TensorFlow
programs. Our results show that these four tools together
detect 72.55% of the top three types of Python bugs.

• Finding: Checkpoint Errors (17.49% ) and Shape Errors
(8.82%) are the two most common types of TensorFlow-
specific bugs. As for the former category (triggered by
failing to load a checkpoint file), we are not aware of
any existing bug-detection techniques reported in the
literature. As for the latter category, a static analysis
approach [14] exists and will be evaluated in this paper.

Action: We have developed SHAPETRACER, a new tool
for detecting also shape-related errors in real-world Ten-
sorFlow applications. In contrast to the static analysis ap-
proach, PYTHIA, described in [14], we adopt a constraint-
based approach for the first time. SHAPETRACER tra-
verses program paths and builds a shape-flow graph
(an abstract dataflow computation graph) for each path.
A constraint solver is then employed to solve shape-
related constraints (introduced by shape operators) for
each shape-flow graph. Finally, a bug is reported if the
constraint solver cannot find a feasible solution, and a
suggestion is offered as a warning if the user input is
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constrained.
Unlike PYTHIA (based on static analysis), SHAPE-
TRACER (based on constraint solving) enables detecting
subtle shape-related errors when the rank (number of
dimensions) or dimensions (dimension sizes) of a shape
are completely unknown. PYTHIA formulates the problem
of detecting shape-related errors as one of inferring the
shapes of tensors from a set of datalog rules and its
analysis cannot progress unless an unknown shape rank
or dimension can be deduced to be a concrete value
(or a finite set of concrete values). However, in real-
world applications, many unknown shapes cannot be con-
cretized this way, as illustrated by the program given in
Figure 1, for which we are required to solve the constraint
“batch size*32==batch size ∨ batch size==1”, where
batch size is provided as user input. In particular, the
shapes of tensors that are statically unknown may be pro-
vided as user input by reading from the commandline or
files, or by calling unmodeled library functions, making
PYTHIA often ineffective, as evaluated in Section VI.
An immediate question arises: does SHAPETRACER suf-
fer from path explosion? The answer is no. TensorFlow
programs have simple control-flow structures, making
such an approach practical and efficient. We have ap-
plied SHAPETRACER to a set of 60 real-world buggy
TensorFlow applications. Our experimental results show
that SHAPETRACER is efficient (by analyzing a program
in at most 3 seconds) and effective (by reporting 40 out
of 60 bugs) in detecting real-world TensorFlow bugs.

SHAPETRACER, together with four other tools, Mypy [16],
Pylint [17], Pyflakes [18], and Pytype [19], have been pack-
aged as a new tool (publicly released soon) for detecting
TensorFlow program bugs and deployed to platform users.
Developers are recommended to run this packaged tool against
their applications before submitting a job to the platform.

In summary, this paper makes the following contributions:

• We report an extensive empirical study on 12,289 in-
dustrial TensorFlow job failures. Our findings show that
most failure-triggering bugs (63.69%) are Python bugs,
and four existing representative static bug-detection tools
can detect 72.55% of the top three types of Python bugs.

• We propose the first constraint-based approach for de-
tecting shape-related errors, one of the most common
TensorFlow-specific bugs. Our approach explores pro-
gram paths systematically and can detect subtle errors
when the rank or dimensions of a shape are unknown, by
solving the shape-related constraints for each path.

• We have implemented our constraint-based approach as
a tool, SHAPETRACER, and applied it to a set of 60 real-
world buggy TensorFlow applications. SHAPETRACER
is highly efficient and effective, by analyzing each ap-
plication in at most 3 seconds, and detecting 40 out
of 60 shape-related errors, with no false positives. We
have also compared SHAPETRACER with PYTHIA [14]
to demonstrate the effectiveness of our new approach.

The rest of this paper is organized as follows. Sec-
tion II gives an overview of TensorFlow programs and the
PLATFORM-X platform. In Section III, we report an empirical
study with 12,289 real-world TensorFlow job failures and mo-
tivate this work. Section IV discusses how existing static tools
detect Python bugs. Section V introduces SHAPETRACER. In
Section VI, we evaluate SHAPETRACER using both open-
source and real-world TensorFlow programs. Section VII
reviews the related work and Section VIII concludes the paper.

II. BACKGROUND

A. TensorFlow programs

The Google-born TensorFlow library [1] is the dominant
open-source deep learning framework. It adopts the dataflow
programming model, which represents all the computations as
dataflow graphs. In a dataflow graph, its nodes are computation
units (i.e., operators) and its edges propagate tensors (typed
multi-dimensional arrays) from their source nodes to their sink
nodes. A dataflow graph is executed on the data provided, with
the input data flowing along its edges, which are processed by
each node before, and the output results finally produced.

A TensorFlow program, commonly written in Python, con-
sists of two phases: construction and execution. Figure 1
gives a simple example abstracted from a real-world industrial
application. In the construction phase (lines 1-14), a com-
putation graph is configured: each operator (e.g., tf.matmal
at line 3) generates some nodes and edges connecting data
between nodes. In the execution phase (lines 15-18), a session
object is created to instantiate the graph, which is executed
multiple times (sess.run in line 18) with data being fed into
the placeholders (e.g., in x and in y at lines 10 and 11,
respectively).

B. The PLATFORM-X Platform

The PLATFORM-X platform is built by Alibaba Group [15]
and deployed in its commercial cloud. PLATFORM-X provides
support for a variety of deep learning frameworks including
TensorFlow [1], PyTorch [20], and MXNet [21]. As for other
platforms, users can submit their deep learning jobs via the
commandline or a web interface by specifying resources
such as CPU/GPU times required and checking the status of
submitted jobs.

Most platform users are production teams within this par-
ticular company. Everyday, tens of thousands of deep learning
jobs run on the platform. There are a substantial number of
job failures, i.e., aborted jobs. The platform will tag each
failed job, and record its log messages for further investigation.
These job failures not only lead to an expensive waste of
resources, but also can take an enormous amount of human
efforts to debug.

III. AN EMPIRICAL STUDY

Our objective is to develop an effective failure prevention
technique. To this end, we take failed TensorFlow jobs on
the PLATFORM-X platform as our study subjects. There are
a total number of 12,289 failed jobs sampled in one month.
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# Construction
1. def fully connect(input op, name, n in,n out ):
2. fc w = tf.get variable(name, [n in, n out])
3. return tf.matmul(input op, fc w)
4. def predict(Input x, class num):
5. mp = tf.nn.conv2d(input x,tf.get variable(’mpc’,[5,5,1,32]),strides=[1,1,1,1], padding=’SAME’)
6. reshaped = tf.reshape(mp, [-1, 28 * 28])
7. fc = fully connect(reshaped, ’fc1’, 28 * 28, 128)
8. logit = fully connect(fc, ’fc2’, 128, class num)
9. return logit
10. in x = tf.placeholder(tf.float32, shape = [None, 28, 28, 1])
11. in y = tf.placeholder(tf.float32, shape = [None, 10])
12. y = predict(in x, 10)
13. cross entropy = tf.reduce mean(tf.nn.softmax cross entropy with logits(labels=in y,logits =y))
14. train step = tf.train.AdamOptimizer(1e-4).minimize(cross entropy)
# Execution
15. train img, train lab = read image( batch size ,...)
16. with tf.Session() as sess:
17. for i in range(1000):
18. sess.run(train step, feed dict = in x:train img, in y:train lab))

Fig. 1. A sample TensorFlow program (abstracted a real-world industrial application).

TABLE I
THE TOP FIVE MOST COMMON TYPES OF JOB FAILURES.

Error Type Example Error Message Patterns

Checkpoint Error Assign requires shapes of both tensors to match. lhs shape= <*> rhs shape= <*>
Key <*> not found in checkpoint

Module/Attribute missing <*><*> has no attribute <*>
No module named <*>

Arguments Mismatch <*> takes exactly <*> arguments <*> given
<*> got an unexpected keyword argument <*>

Undefined Variable name <*> is not defined
local variable <*> referenced before assignment

Shape Error
Shape must be rank <*> but is rank <*> for <*> op: <*> with input shapes: <*><*><*><*>

Cannot feed value of shape <*> for Tensor <*> which has shape <*><*>
Dimensions must be equal, but are <*> and <*> for <*> (op: <*> with input shapes: <*><*>

All failed jobs are submitted by different production teams
in Alibaba Group. For each failed job, we contacted its
corresponding production team to collect related information
including source code, execution logs, and job scripts. We
are not able to obtain the input data to a job since they are
regarded as being highly confidential. Thus, it is difficult to
reproduce a failure by rerunning the failed application.

Figure 2 shows the size distribution of studied applications.
TensorFlow programs are small, with 407 lines of uncom-
mented code on average. The largest program that we studied
has 2,355 lines of uncommented code. Note that the third party
libraries packaged in an application are not considered.

A. Failure Classification

It is time-consuming to manually analyze the 12,289 appli-
cations one by one. Hence, we apply log analysis [22] to group
failed applications throwing the same error message pattern
together. Figure 3 gives an example. The application throws
an error message at line 2, which is parsed into a regular
expression “Input to reshape is a tensor with <*> values, but
the requested shape has <*>”. All the applications throwing

Fig. 2. Distribution of program sizes, in lines of uncommented code.

the same error message pattern are then grouped together. In
the end, there are 968 failed groups. We have sampled 630
applications using the standard sample size calculator with a
confidence level of 99%, and confirmed that most applications
in the same group fail due to the same root cause.

We have randomly selected two applications in each group,
and manually investigated their root causes to failure. Finally,
we obtain a total of 17 common root causes. Table I highlights
the top five, with some error message patterns highlighted.
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1. Traceback (most recent call last):
//other stack traces

2. tensorflow...errors impl.InvalidArgumentError:
Input to reshape is a tensor with 1583 values,
but the requested shape has 1820

Fig. 3. The exception trace of a failed job.

Fig. 4. Bug type distribution in TensorFlow programs. TensorFlow-specific
bugs are depicted in dark bars and Python bugs in gray bars.

B. Threats To Validity

First, root cause analysis and failure classification involve
manual inspection on application code, which may be sub-
jective. To mitigate this threat, each failed application was
examined by two authors separately and the results were cross-
validated. Decisions were made only if both authors reached an
agreement. For some applications, we also communicated with
the original developers to confirm our decisions. Second, our
study subjects are all from the PLATFORM-X platform. Hence,
some findings may not be applicable to other platforms. To
mitigate this threat, we focus on failures caused by program
bugs instead of platform-specific issues (e.g., failures related
to an execution environment). The PLATFORM-X platform is a
widely used platform and the 12,289 studied applications cover
a variety of areas, including image and speech recognition,
natural language processing, and recommendation systems.

C. Findings

We focus our study on bug-related failures. Out of 12,289
job failures, 1,612 failures are environment-related, throwing
error messages such as “remote file <*> not found”. In
addition, 586 jobs failed due to corrupted input data. Those
job failures will not be further discussed. The remaining
10,091 failure-triggering bugs are classified into two cate-
gories: Python bugs and TensorFlow-specific bugs. Figure 4
divides these 10,091 bugs into different types of bugs in
percentage terms, with the Python bugs shown in gray bars
and TensorFlow-specific bugs in dark bars.

Finding 1: 63.69% bugs are Python bugs, which also
commonly exist in general-purpose Python applications.

1) Python bugs: Let us examine some Python bugs clas-
sified in Figure 4. The most common type of Python bugs is

Module/Attribute Missing (referencing a non-existent Python
class field or function), accounting for 13.61% of all bugs.
There are also other common bug types, such as Argument
Mismatch (invoking a function with an inconsistent number
of actual arguments) and Undefined Variables (referencing
a variable before its definition), accounting for 12.67% and
12.51% of all bugs, respectively.

Several Python bug types are directly related to the dynamic
features of Python, e.g., Type Mismatch (operating on ob-
jects of incompatible types), Illegal Argument (arguments not
satisfying function specifications), and Not Iterable/Callable
(iterating over objects of non-collection types). The other
Python bug types are common run-time errors such as Key Not
Found (accessing maps with non-existent keys) and Divide by
Zero (dividing a value by 0).

2) TensorFlow-Specific Bugs: Checkpoint Error, the most
common bug type, accounts for 17.49% of all bugs. Platform
users frequently use the checkpointing mechanism to store a
trained model to the cloud or to load an already-trained model
from the cloud for inference or further training. A checkpoint
bug arises when either the model file is missing or the loaded
model is inconsistent with the required network structure. The
former is related to a particular execution environment and
how to deal with the latter is worth a separate investigation.

Shape Error (8.82%) arises when invoking TensorFlow
operators with arguments of incompatible shapes (incom-
patible ranks or dimensions). It is difficult for developers
to understand the tricky semantics of thousands of Tensor-
Flow APIs, leading to frequent Shape Error bugs in prac-
tice. For example, many TensorFlow operators (e.g., soft-
max cross entrophy with logits at line 13 in Figure 1) sup-
port the NumPy “broadcasting” semantics (which “broadcasts”
a small array across a relatively large array, by copying leading
dimensions of the higher-rank argument and padding any
dimension of size 1 to the size of the matching dimension
from the other argument), often leading to surprising results.

It can be difficult to debug Shape Error bugs. As illustrated
in Figure 3, an exception is thrown at line 2 when invoking
the tf.reshape operator. The tf.reshape operator changes the
shapes of tensors as long as their sizes (number of elements)
stay the same. Hence, it fails to convert a tensor of 1,583
elements to a specified shape of 1,820 elements and throws
an exception. However, the tf.reshape operator is frequently
used. In the example, there are 29 tf.reshape operators and it
is time-consuming for developers to examine each operator.

Finding 2: Shape Error is one of the most common
TensorFlow-specific bugs (8.82% of total bugs) and such
bugs can be detected effectively as demonstrated in [14].

The other types of TensorFlow-specific bugs include Out of
Memory (GPU out of memory, commonly fixed by reducing
the sizes of tensors), Loss NaN (invalid loss values), GPU
Sync Failed (memory issues in GPU [23]), and Graph Not
Complete (invalid dataflow graphs).
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TABLE II
PYTHON BUGS REPORTED BY FOUR EXISTING STATIC TOOLS [16]–[19].

BugType Mypy Pylint Pyflakes Pytype Total
Mod/Att Missing 5.33% 28.00% 8.00% 48.00% 57.33%

Arg Mismatch 1.27% 25.05% 8.28% 18.68% 41.61%
Undef Var 20.85% 71.59% 96.88% 75.70% 98.36%

Total 11.86% 49.78 % 54.98 % 50.95 % 72.55%

IV. DETECTING PYTHON BUGS

There are a number of static tools for finding bugs in Python
programs, such as Mypy [16], Pylint [17], Pyflakes [18],
and Pytype [19]. We have investigated their effectiveness in
detecting Python bugs in industrial TensorFlow programs.

Table II gives the results for the top three Python bug types.
Overall, these four tools together have detected 72.55% of all
the bugs of these three types. Since these bugs are simple
semantic errors, the false positive rates of these four tools are
low. Among the four tools, Pyflakes is the best performer,
reaching 54.98%. However, all the four tools perform poorly
on Arguments Mismatch bugs (with Pylint attaining only
25.05% even as the best performer for bug type).

V. DETECTING SHAPE ERROR BUGS

In TensorFlow programs, tensors are the basic data units. A
tensor is a multi-dimension array and its shape refers to the
number of dimensions (rank) and dimensions’ sizes. Shape
Error bugs are the errors incurred when the shape of a tensor
does not match the specification of an operator.

In [14], a static analysis, PYTHIA, is introduced for de-
tecting Shape Error bugs, by modeling tensor operators in
Datalog, so that the shape of a tensor can often be de-
duced to be a concrete shape (or a set of concrete shapes).
PYTHIA can detect 11 out of the 14 shape-related bugs studied
in [11]. However, from our study on industrial TensorFlow
applications, there are still many cases where the rank or
dimension sizes of a tensor are completely unknown. For ex-
ample, PYTHIA failed to report any error in the 60 real-world
applications under testing, due to unresolved unknown shape
values. Therefore, in this paper, we introduce a new constraint-
based approach, SHAPETRACER, for detecting Shape Error
bugs, and we will compare it with PYTHIA in our evaluation.
In this section, we first use three examples to motivate our
approach and then describe it in detail.

A. Motivating Examples

1) Example 1: Figure 5 depicts the computation graph for
the program in Figure 1, where each edge is annotated with
the shape information of its propagated tensor. The shape of
a tensor can be input-dependent: a placeholder tensor can set
some dimensions (or the whole shape) to none and its shape
will be instantiated by feeding data to the placeholder (using
the feed dict operator, e.g., line 18) when executing the graph.

The computation graph is executed by invoking Ses-
sion.run(), Tensor.eval(), or Operation.run(). In Figure 1, at
line 18, the graph is executed to obtain the results from the
operator train step (line 14). The input data train image and
train lab (line 15) are fed to the placeholders in x (line 10)

and in y (line 11), respectively. Note that the first dimension
of input data is configured by an input argument batch size
as highlighted by the box in line 15. As a result, the shapes
of tensors in x and in y are [batch size, 28, 28, 1] and
[batch size, 10], respectively.

The tensor in x is passed as an actual parameter to the
function predict() at line 12 and processed by conv2d (line 5),
a core operator for convolution. The conv2d operator is often
used to extract intermediate features in complex neural net-
works. It takes a 4-dimensional input tensor, a 4-dimensional
filter tensor, and a strides vector with 4 elements as input.
With the “same” padding strategy, cond2d(x, f, s, “same”) will
produce a tensor of shape [x[0], x[1]

s1
, x[2]

s2
, f [3]]. Hereafter, we

use the notation x[i] to represent the ith dimension of tensor
x’s shape and the notation si to represent the ith element of
vector s. In our example (Figures 1 and 5), the conv2d operator
produces the tensor mp of shape [batch size, 28, 28, 32].

The reshape operator at line 6 changes the shape of the
incoming tensor mp to a specified shape [-1,28*28], i.e., a 2-
dimension array. Here, the special dimension size -1 denotes
that the size of the corresponding dimension needs to be
computed dynamically. A tensor can be reshaped correctly if
its size (total number of items in the tensor) is the same as
the size of the specified shape. At line 6, after reshaping, we
have a new tensor reshaped of shape [batch size*32, 28*28].

At line 7, the function fully connect is invoked with the
tensor reshaped as its actual parameter. Thus, the operators
get variable (line 2) and matmul (line 3) are included in the
computation graph. The matmul operator multiply reshaped
([batch size*32, 28*28]) with fc w ([28*28, 128]), resulting
in a new tensor fc of shape [batch size*32, 128]. Next, the
tensor fc is processed by the same function again at line 8.
Finally, logit ([batch size*32, 10]) is produced and returned
as y.

The operator softmax cross entrophy with logits (line 13)
produces normalized probabilities from input tensors in y
([batch size, 10]) and y ([batch size * 32, 10]). It supports
the “broadcasting” rule: sizes of matching dimensions must
be identical, or one of them is 1 (in which case, the resulting
tensor adopts the other size in its corresponding shape dimen-
sion). Hence, the operator can succeed only if the sizes of both
tensors’ first shape dimensions are the same or one of them is
1, i.e., batch size*32==batch size ∨ batch size==1. As the
user input batch size is configured to be 200, the application
failed with a runtime exception.

2) Examples 2 and 3: Let us look at another two examples
given in Figures 6 and 7, respectively. In Figure 6, the
tensor behavior input comes from user input and its shape
(i.e., its rank and dimension sizes) is completely unknown.
At line 1, tensor tmp user profile cnn is reshaped to a 4-
dimensional tensor user profile cnn, which is then multiplied
with behavior input via the operator matmul, suggesting that
the rank of behavior input is also 4, since the operator will
fail otherwise. At line 3, tensor attention weights is reshaped
to a 3-dimensional tensor tmp attention weights, which is
also multiplied with behavior input. Since the input tensor
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Fig. 5. The computation graph for the program given in Figure 1, where the nodes represent the operators in the program and the tensors (black dots) flow
along the graph edges (annotated with the the shape information of their propagated tensors). The bug triggered is highlighted.

1. user profile cnn = tf.reshape(tmp user profile cnn, shape=[-1, num behavior max[behavior cnt], n output behavior, 1])
2. attention layer input = tf.matmul( behavior input,user profile cnn)
......
3. tmp attention weights = tf.reshape(attention weights, shape=[-1, num behavior max[behavior cnt], 1])
4. behavior output = tf.matmul(tmp attention weights, behavior input)

Fig. 6. Code from an industrial application, where the shape of behavior input is completely unknown. The bug-triggering lines are highlighted in red.

behavior input cannot satisfy both constraints, the application
will always fail on one of the matmul operators (at line 2 or
line 4).

In Figure 7, the tensor labels is a 2-dimensional array
and the tensor pred is a 1-dimensional array. All their di-
mension sizes are unknown. The bug is triggered at line 2
when the condition loss type == “mae” holds, since the
operator absolute difference expects input tensors with the
same shape (i.e., same rank and dimension sizes). However,
the bug will not be triggered if the other branch is taken
(when input parameter loss type is “logloss”). The operator
sparse softmax cross entropy with logits allows the rank of
the input argument pred to be one less than that of labels.
Hence, it will not trigger a bug.

B. Methodology
In the above three examples, there are tensors with com-

pletely unknown shapes (Example 2) or partially unknown
shapes (Examples 1 and 3). It is difficult to write Datalog
rules (as in PYTHIA [14]) and deduce those unknown shapes
to a finite set of concrete shapes. The tensors with unknown
or partially unknown shapes can be frequently found in real-
world applications. They can come from commandline input,
files, or unsupported library functions. Note that it is difficult
for developers to manually annotate a tensor from files with
unknown shape information. In addition, the TensorFlow li-
brary provides thousands of APIs and enterprises often offer
their own in-house libraries. It will be a daunting task, if not
impossible, to support all libraries APIs, in practice.

Therefore, we are motivated to develop SHAPETRACER,
a new tool founded on a constraint-based approach. We
represent the shape of a tensor symbolically by introducing
symbolic values for unknown ranks or unknown dimension

sizes. Constraints can be introduced from tensor operators,
scalar variables, and conditional branches. Finally, a constraint
solver is applied to check the satisfiability of these constraints.

For instance, for Example 1 (Figure 1), the value of input
variable batch size is symbolic, denoted as X . The computa-
tion graph will generate a constraint X ∗32 == X∨X == 1,
together with other constraints. The solution is X = 1, which
can be provided to users as a warning. In Example 2 (Figure 6),
the rank of tensor behavior input is symbolic, denoted as X .
The two matmul operators at line 2 and line 4 will introduce
their respective constraints, X == 4 and X == 3. As both
cannot be satisfied together, an error is found.

C. SHAPETRACER

We have implemented SHAPETRACER in WALA [24] and
used Ariadane [25] as its front-end to parse Python programs
into WALA IR. Figure 8 sketches the architecture of SHAPE-
TRACER. Its three main components are summarized below.
• First, Builder traverses program paths and builds a shape-

flow graph (an abstracted computation graph) for each
path.

• Next, Solver formulates a shape-flow graph into a list of
constraints, which is then solved by Z3 [26], a state-of-
the-art constraint solver.

• Finally, an error (warning) is issued if the constraints are
not satisfiable (if the user input is constrained). To report
precisely the line number where a bug/warning occurs,
Reporter searches for the first operator introducing un-
satisfiable constraints, and reporting it to the user.

Next, we describe these three components in detail.
1) Builder: Builder constructs a shape-flow graph for each

program path. This may sound inefficient initially. However,
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1. if loss type == ”mae”:
2. loss = tf.reduce mean(tf.losses.absolute difference(labels, pred))
3. elif loss type == ”logloss”:
4. loss = tf.reduce mean(tf.nn.sparse softmax cross entropy with logits(logits=pred,labels=labels), 0)
5. optimizer = tf.train.GradientDescentOptimizer(0.05).minimize(loss, ... )

Fig. 7. Code from an industrial application, where pred is a 2-dimensional array with unknown dimension sizes and labels is a 1-dimensional array with an
unknown dimension size. The bug-triggering line is highlighted in red.

Fig. 8. The high-level architecture of SHAPETRACER.

the control flow structures of TensorFlow programs are usually
simple. In general, the number of program paths is 2, rarely
reaching 8. In an extreme case, where the neural network
is constructed in a loop (Figure 12), the largest number of
program paths observed is 256 only.

a) Basic Algorithm: The shape-flow graph of a program
is its abstracted computation graph annotated with shape infor-
mation. To build a shape-flow graph, we slice backwards from
an invocation to session.run(), i.e., from an output tensor. Since
TensorFlow programs commonly propagate values directly
through assignments or parameter passing, we slice along
the use-def chains of WALA’s SSA (single static assignment)
representation. During the backward slicing, function calls are
inlined: when a function call is met, the return values of
the callee function are added to the graph (as new nodes)
and we continue slicing backwards from the newly added
return values. In the end, all operators (i.e., TensorFlow API
invocations), tensors and scalars (e.g., actual parameters of
operators), that the output tensor is transitively dependent on,
are included in the graph.

Let us explain our basic algorithm using the example in
Figure 1. We slice from sess.run() at line 18, i.e., the output
tensor train step. Since train step is returned from the opera-
tor minimize, the operator and its operand (i.e., cross entropy)
are added to the graph. Similarly, cross entropy is produced
by the operator softmax cross entropy with logits (line 13).
Hence, the operator and its operands (in y and y) are included.
From y, we inline the function call to predict (line 12) and
continue slicing from its return value logit (line 9). Next, the
function def fully connect is inlined twice at lines 8 and 7, in
that order. The final shape-flow graph is given in Figure 5.

b) Graph Duplication: Shape-flow graphs are duplicated
at phi nodes (control-flow confluence points in SSA). When
we encounter a phi node with n incoming values, the graph is
duplicated n times and each graph picks a distinct incoming
value to continue slicing. Figure 9 gives the shape-flow graphs

of Example 2 (Figure 6). In SSA, there exists a phi node at
the confluence point of different branches of the if statements
(lines 1 - 4). Thus, we have two shape-flow graphs, one for
each branch.

Loops, although rarely seen in the graph construction phase,
are processed by unrolling a loop twice. In our study, there is
only one application building neural networks in a loop.

c) Shape Information Collection: Constants and scalar
variables propagated directly along use-def chains are recorded
straight-forwardly. We try to infer as much concrete informa-
tion as possible by applying constant propagation and comput-
ing concrete shape information according to the documented
semantics of TensorFlow APIs. We also consider the following
two special cases. First, the shape of a tensor can be set
using the tf.setshape() function, as shown in Fig. 10 (lines
2 and 4). Hence, for each tensor, we check its uses for a
tf.setshape() call to the object, and update the shape of the
tensor accordingly. Second, in most cases, values are directly
propagated. However, when initializing a tensor with a given
shape, values are passed into the constructor of the shape as
parameters and stored in its corresponding fields. In general, a
pointer analysis [27]–[30] is required to compute field-related
dependences. However, such fields of a shape object are only
stored once, in its constructor (during initialization). Therefore,
when encounter a field load, we simply search for a unique
store to the corresponding field.

2) Solver: Solver formulates a shape-flow graph as a list of
constraints, which are then solved by Z3 [26]. We collect the
constraints from tensor operators and scalar instructions in the
shape-flow graph. However, we do not consider branch condi-
tions, since shape-related values rarely have data dependences
on conditionals in real-world TensorFlow applications.

Figure 11 defines the symbolic representation of shapes and
values. Specifically, T [−1] denotes the size of T’s last shape
dimension. This variable is particularly useful when T’s rank
is unknown, i.e., T is symbolic. By default, we assume that
all variables are symbolic unless otherwise specified. If T is a
constant value C, we introduce a variable for each dimension
size of T, by applying the following function to concretize T:

Concretize(T,C) :

C−1∏
i=0

T [i] == |T | ∧ T [−1] == T [C − 1] ∧ T == C

This function sets T’s rank to C, sets T [−1] to T’s last
dimension size (T [−1] == T [C−1]) , and concretizes T’s size
to the product of its all dimension sizes (|T | ==

∏C−1
i=0 T [i]).

Constraints are introduced for operators according to their
documented semantics. For instance, the C=reshape(A,B) op-
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Fig. 9. The two shape-flow graphs (one for each path) of the program given in Figure 7. The oval nodes are operators and square nodes are scalars. The
edges are annotated with shape information of their associated tensors (blackdots).

1. x = tf.placeholder(tf.float32, [None])
2. x.set shape([1028178])
3. y = tf.identity(x)
4. y.set shape([478, 717, 3])
5. X = np.random.normal(0, 0.1, 1028178)
6. Y = sess.run(y, feed dict=x: X)

Fig. 10. The code example UT-3 from [11].

T [0], T [−1], T [−], ... T’s Dimension sizes
|T | T’s Total size (number of elements)
T T’s Rank (number of dimensions)
V0, V1, ..., V|V |−1 V’s element values
X X’s value

Fig. 11. Symbolic representation of tensor T’s shape, vector V’s values, and
scalar X’s value. V is a 1-dimensional shape, and its size |V | is a constant.

erator reshapes tensor A to tensor C of the same size, with the
shape specified by vector B. Hence, we have:∧
0≤i<|B|

C[i] == Bi ∧ C == |B| ∧ Concretize(C, |B|) ∧ |C| == |A|

Here, the constraint |C| == |A| states that tensor C and A
have the same size (as required by reshape), and the remaining
constraints specify the shape of C according to vector B: C’s
rank is defined by B’s size (C == |B|), and C’s dimensions
are defined by B’s elements (

∧
0≤i<|B| C[i] == Bi). Note

that the size of B, i.e., |B|, is a constant. Hence, tensor C
is concretized (Concretize(C, |B|)). Except for one element
value (e.g., -1), all the other element values are constant. The
same list of constraints is applicable to the case when tensor
A’s rank is constant, i.e., when A is already concretized.

Let us examine the operator softmax cross entropy-
with logits, abbreviated as C=logits(A,B), for supporting

Numpy “broadcasting”. Before we dive into the details of
the tricky broadcasting semantics, we first introduce another
helper function Broadcast(A,B,C, i, j). This function repre-
sents the constraints on the ith dimension of the higher-ranked
input tensor A, the ith dimension of output tensor C, and the

matching jth dimension of the other input tensor B, where
j ≤ i:

Broadcast((A,B,C, i, j) : ((A[i] == B[j] ∧ C[i] == A[i])

∨(A[i] == 1 ∧ C[i] == B[j]) ∨ (B[j] == 1 ∧ C[i] == A[i]))

Broadcast((A,B,C, i) holds if one of the following three
cases holds: 1) A[i] matches with B[j], producing the same
size for C’s ith dimension, 2) A[i] is 1, in which case C’s ith
dimension takes the size from B’s jth dimension, and 3) B[j]
is 1, in which case C’s ith dimension size takes that from A’s.
The three cases reproduce the semantics of broadcasting one
pair of matching dimensions (A[i] and B[j]).

The list of constraints for C=logits(A,B) is given by:

(A == B ∧Broadcast(A,B,C, 0, 0) ∧Broadcast(A,B,C,−1,−1))∨
(A > B ∧Broadcast(A,B,C,−1,−1) ∧A[0] == C[0])∨
(A < B ∧Broadcast(A,B,C,−1,−1) ∧B[0] == C[0])

The above constraints are applied when A or B is symbolic.
In this case, we only introduce the constraints on the first and
last dimension sizes of the input and output tensors. In the
case of A == B, the constraints are applied to the first and
last dimensions of all three tensors A, B, and C (Broadcast <
A,B,C, 0 > ∧ Broadcast < A,B,C,−1 >). In the other
two cases, the constraints are applied to the last dimension of
the three tensors, and the output tensor C takes the size from
the higher-ranked tensor (e.g., A[0] == C[0] when A > B).

When both A and B are constants (i.e., A and B are
concretized), C can be concretized as follows:

(A == B ∧ Concretize(C,A) ∧
∧

0≤i<A

Broadcast(A,B,C, i, i))∨

(A > B ∧ Concretize(C,A) ∧
∧

0≤i<A−B

C[i] == A[i]∧

∧
0≤i<B

Broadcast(A,B,C, i+A−B, i))∨

(A < B ∧ Concretize(C,B) ∧ . . . )

In the case of A == B, the output tensor C is con-
cretized and each of its dimensions is defined by the
Broadcast rule. Otherwise, C is concretized with the higher
rank (e.g, Concretize(C,A) when A > B), higher di-
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TABLE III
NUMBER OF REPORTED ERRORS/WARNINGS IN INDUSTRIAL AND

OPEN-SOURCE (FROM [11]) APPLICATIONS. #TP IS THE NUMBER OF
REPORTED TRUE BUGS, #FP IS THE NUMBER OF REPORTED FALSE

POSITIVES, AND #FN IS THE NUMBER OF FALSE NEGATIVES.

Tool Industrial Open-Source
#TP #FP #FN #TP #FP #FN

SHAPETRACER 24/16 0 20 9/0 0 5
PYTHIA 0/0 0 60 7/4 1 2

Enhanced PYTHIA 9/0 0 51 7/4 1 2

mensions are copied directly from the higher-ranked tensor
(
∧

0≤i<A−B C[i] == A[i]), and the matching dimensions are
broadcasted (

∧
0≤i<B Broadcast(A,B,C, i+A−B, i)).

Similarly, appropriate constraints are introduced for the
other operators, such as conv2d and matmul. To date, SHAPE-
TRACER provides support for 54 common operators, with an
average of 34.8 lines of code for each operator. For tensors
returned from unsupported library functions, their ranks are
symbolically represented. In the end, the constraints of a
shape-flow graph are fed into Z3 [26].

3) Reporter: If Z3 fails to solve a given set of constraints (if
a user input is constrained by a constant value), an error (warn-
ing) is issued. While errors can always trigger a bug, warnings
suggest expected user inputs. To report the bug location
precisely, Reporter searches for an operator introducing the
unsatisfiable constraints found. Conceptually, this is realized
by removing each operator one by one (more precisely, by
removing the constraints introduced by each operator), in the
reverse order of when it is added to the underlying dataflow
graph, until the constraints become satisfiable. In practice, we
have accelerated this process using binary search.

VI. EVALUATION

Our evaluation addresses the following research questions:
• How effective is SHAPETRACER in detecting Shape Error

bugs in TensorFlow programs?
• How does SHAPETRACER compare to a state-of-the-art

static analysis tool, PYTHIA [14]?
• How efficient is SHAPETRACER?

All experiments were conducted on a laptop equipped with
i5-9400 CPU and 32GB RAM.

A. RQ1: Effectiveness

We evaluate SHAPETRACER using a set of 60 buggy indus-
trial TensorFlow programs (randomly picked from our study)
and the 14 open source programs studied in [11].

Table III summarizes the results. Overall, SHAPETRACER
has successfully detected 40 out of 60 bugs in industrial
programs, and 9 out of 14 bugs in open-source applications.
There are 33 errors (24 from the industrial programs and 9
from the open-source programs) and 16 warnings (all from
the industrial programs). A bug can definitely be triggered for
any of the 33 reported errors. The 16 warnings are subject to
user input, in which case SHAPETRACER warns on expected
input values. The applications that exhibit these warnings can
only be correct if the corresponding shape-related constraints

1. deep out = None
2. for idx, info in enumerate(self.deep info):
3. if idx == 0:
4. deep out= deep features
5. else:
6. deep out = res out
7. deep out = tf.matmul(deep out,info[”w”])
8. deep out = tf.nn.leaky relu(deep out)
9. if idx > 1:
10. res out=tf.concat([deep out,deep out list[idx-1]])
11. else:
12. res out = deep out
13. if len(deep out list) <= idx:
14. deep out list.append(deep out)
15. else:
16. deep out list[idx] = deep out
......
17. loss = tf.reduce mean(

tf.nn.sigmoid cross entropy with logits(
logits=pred, labels=labels))+l2

Fig. 12. Code snippet of a false negative example: the neural network is built
in a loop. Each loop iteration builds one layer of the network (lines 2-8). The
next loop iteration uses the previous two layers as input to build a new layer
(line 10). The bug is triggered at line 17 as highlighted in red.

TABLE IV
FALSE NEGATIVES IN THE 20 INDUSTRIAL PROGRAM BUGS EXPLAINED.

# Reasons for Producing False Negatives
19 Too many shape-related values from user input
1 Constructing neural networks in a loop.

are met. According to our experience, the odds for such a
warning to be an error is much higher than that for the
shaped-related constraints to be always satisfiable. Thus, these
16 warnings can be considered as errors detected. We will
compare SHAPETRACER and PYTHIA later.

1) False Negatives: SHAPETRACER failed to detect 20 in-
dustrial program bugs, with the two reasons given in Table IV.
19 bugs were not reported because the corresponding programs
define most of their tensor shapes in configuration files, result-
ing in many unknown shapes. Since SHAPETRACER failed
to deduce a constant-constrained input, no error or warning
was given. The other false negative occurs in the program
illustrated in Figure 12, where a neural network is constructed
in a loop. ShapeTracer processes a loop by unrolling it twice,
which is not sufficient for detecting this particular bug.

There are also 5 open-source program bugs missed by
ShapeTracer. We will discuss these bugs in Section VI-B2.

2) False Positives: SHAPETRACER did not report any false
positives for the programs in Table III. To evaluate its precision
further, we have further tested SHAPETRACER using a set of
60 randomly selected correct programs from the PLATFORM-X
platform. Again, no false positive was reported.

3) Error and Warning Examples: Figure 13 gives a buggy
example, with the bug triggered at line 10. The operator abso-
lute difference requires the incoming arguments of the same
shapes, producing constraint layer8 == var 0. Furthermore,
SHAPETRACER can infer that layer8 is of shape [-1,1] (line
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1. def input fn():
2. #other complex operation
3. var 0.shape = [-1]
4. var 1 = tf.reshape( var 1, [None, 31])
5. return var 0,var 1
6. def model fn(var 1, var 0, reuse):
7. #other complex operation
8. #layer7 and w7 comes from other operation
9. layer8 = tf.matmul(layer7,W7)+b7#now layer8 is [-1,1]
10. tmp1 = tf.losses.absolute difference(layer8, var 0)
11. loss = tf.reduce sum(tmp1)
12. return loss,
13.var 0, var 1 = input fn()
14.loss = model fn(var 1, var 0, False)
15.c = sess.run([loss])

Fig. 13. Code snippet with a bug, abstracted from an industrial program.
Sensitive variable names have been replaced with var 0 and var 1.

1. def fun 0(batch size):
2. #other complex operation
3. var 1 = cloud platform api0(batch size, 67)
4. return var 1
5. var 0 = fun 0(batch size) #batch size is from user input
6. x = tf.reshape(var 0, [-1, 66])

#warning reported by ShapeTracer
[[z3][suggest]]

[batch size]filename.py(line3) value = 66
[anonymous]filename.py(line6) value = 67

Fig. 14. Code snippet of an example, which contains a warning, abstracted
from an industrial program. Sensitive variable names have been replaced with
var 0 and var 1. The warning message is given in the box.

9) and var 0 has a shape of [-1] (line 3). Inference details are
omitted here due to space limitation. As a result, we derive the
constraints layer8 == var 0 ∧ layer8 == 2 ∧ var 0 == 1,
which are unsatisfiable. Hence, an error is reported. It is worth
noting that SHAPETRACER generates 1,485 constraints for this
program. However, Reporter is able to examine every operator
and precisely points out the bug location.

Figure 14 gives an example triggering a warning, together
with the warning message reported by SHAPETRACER. The
cloud platform api0 at line 3 produces tensor var 1 of shape
[batch size, 67] (with batch size being unknown), which is
propagated to var 0 (line 5). The operator reshape at line 6
reshapes var 0 to the specified shape [-1, 66], and expects the
size of var 0 to match with the size of the specified shape, i.e.,
batch size×67 == X×66, where X stands for the symbolic
value of the vector. Given such constraints, SHAPETRACER
will issue a warning as highlighted. Note that the warning
and error messages are helpful to developers during both code
review or post-mortem debugging.

B. RQ2: Comparing with PYTHIA

Table III also compares SHAPETRACER with PYTHIA [14]
(provided by its artifact) on detecting Shape Error bugs in
industrial and open-source programs. PYTHIA is a state-of-
the-art tool for detecting TensorFlow shape-related bugs.

TABLE V
COMPARING SHAPETRACER AND PYTHIA ON OPEN-SOURCE PROGRAMS,

WITH X(") DENOTING A CORRECTLY REPORTED ERROR (WARNING).

UT-1 UT-5 UT-12 UT-13 UT-15
SHAPETRACER X X - - -

PYTHIA " - " " "

1) Industrial Programs: PYTHIA neither detects any indus-
trial program bugs nor reports any false positives. To figure
out why, we have carefully examined the logs and messages
printed by PYTHIA and summarized the reasons below:
• PYTHIA failed on 23 industrial programs due to im-

plementation bugs. It throws runtime exceptions in
PYTHON FACT GEN when generating Python facts. We
have reported this issue to the PYTHIA developers for
further investigation.

• PYTHIA failed on the other 34 industrial programs due to
unknown shape values. Although facts were successfully
generated, the unknown shape values prevented its analy-
sis to progress further. Unknown shape values come from
user inputs or unsupported operators. Note that although
there still exist a considerable number of unknown values
in SHAPETRACER, our constraint-based approach still
enables our analysis to detect many bugs, as demonstrated
in our motivating examples (Section V-A).

• PYTHIA can successfully analyze a partially-known shape
(with a None or special (-1) dimension). However, it
cannot analyze both completely unknown shapes (e.g.,
an unknown rank) and completely unknown dimensions
when they cannot be concretized. As a result, it fails to
detect any error in the set of 60 real industrial programs.
We further investigated on how to extend PYTHIA to
deduce as many unknown shapes as possible. An extra
Unknown tag is introduced for any unknown shape, and
new datalog rules are introduced to deduce the rank
and dimension values of tagged Unknown shapes. For
example, for a matmul operator, its two parameter shapes
must have the identical rank. Thus, we can infer the
rank of a completely unknown parameter shape from the
other parameter. We have extended PYTHIA with a set
of 75 datalog rules (509 LOC). This extension enables
PYTHIA to detect 9 shape-related errors. However, it still
fails to report the other errors due to unknown shape
values or unfixed crashes. For example, three shape-
related errors that are missed by PYTHIA are related
to complex constraints like batch size*32==batch size
illustrated in Figure 1.

2) Open-Source Programs: PYTHIA performs much better
on open-source programs, and we have successfully repro-
duced their results (as in their paper [14]) using their given
artifact. Table V highlights the differences of the two tools on
open-source programs. PYTHIA reported warnings for the 3
bugs, UT-12, UT-13, and UT-15, missed by SHAPETRACER.
PYTHIA exploits heuristics to report these 3 warnings (e.g.,
suspicious broadcasting). We did not implement such heuris-
tics in SHAPETRACER because they can lead to many false
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Fig. 15. Analysis times of SHAPETRACER on 60 industrial programs.

Fig. 16. Size distribution of shape flow graphs for industrial programs.

positives and developers often ignore such warnings.
In UT-13, operator argmax(Y[4,1], axis=1) will result in a

shape of [4] with all values being zero. In UT-15, y[3,1]-y [3]
produces a tensor of shape[3,3], due to broadcasting. PYTHIA
warns on such suspicious operations since the results look sur-
prising. However, these programs still satisfy the shape-related
rules. We attempted to incorporate similar heuristics but were
discouraged to do so (by our industry sponsor developing the
PLATFORM-X platform) because of spurious reports. UT-12
uses list slice in Python to construct the shape of all initial
tensors, which is not yet supported by SHAPETRACER.

C. RQ3: Efficiency

Figure 15 summarizes the analysis times of SHAPETRACER
on the 60 industrial programs. SHAPETRACER is fast, as it
finishes all its analyses in at most 3 seconds for each program
on a standard laptop with 32GB RAM. Note that the analysis
times include the times in exploring programs paths, collecting
and solving constraints, and searching for bug locations.

Figure 16 shows the size distribution of shape-flow graphs.
The sizes of shape-flow graphs range from 12 to 810 nodes,
with an averages of 246.9 nodes. The average number of
constraints for each shape-flow graph is 914.8, which looks
seemingly large. However, as most of constraints are constant
equality constraints, Z3 can solve them very efficiently.

VII. RELATED WORK

Empirical Studies. Zhang et al. [11] investigated 175 Tensor-
Flow program bugs from Stack Overflow and GitHub. Follow-
ing [11], Islame et al. [31] performed a more comprehensive
study on deep learning program bugs, including 2,716 bugs
from applications using five different deep learning libraries
(Caffe [2], Keras [32], Tensorflow [1], Theano [33], and Torch
[3]). The authors in [12] conducted an extensive empirical
study on 4,960 job failures on Microsoft’s Philly platform.
Guo [13] surveyed bugs in deep learning development and

deployment. In this paper, we also perform an empirical study
focusing on 12,289 industrial TensorFlow job failures on a
new platform, motivating us to develop SHAPETRACER, a new
static tool for detecting TensorFlow shape errors.

Static Bug Detection. Python is the most popular language in
developing deep learning applications [13]. Python bugs [16],
[17] in deep learning programs can be detected quite effec-
tively with existing static tools, as confirmed in this paper.

A number of research efforts focus on shape-related bugs.
Ariadne [25] is the first static shape analysis tool developed
for TensorFlow. However, due to implementation issues (e.g.,
failing to analyze shapes inter-procedurally), it cannot effec-
tively detect errors in practice [14]. PYTHIA [14] is shown to
be able to detect 11 out of 14 open-source program bugs using
a Datalog-based static analysis. In this paper, we introduce a
new constraint-based approach and a tool, SHAPETRACER, to
detect effectively industrial TensorFlow program bugs.

Testing. There is a large body of research [34]–[40] aiming at
testing the robustness of deep learning models. How to apply
a constraint-based approach to improve testing effectiveness is
an interesting topic worth further investigation.

VIII. CONCLUSION

This paper aims at detecting industrial TensorFlow pro-
gram bugs. We have conducted an extensive empirical study
on 12,289 failed industrial TensorFlow jobs. Based on our
findings, we have applied four existing representative static
tools to detect 72.55% of the top three common Python
bugs in TensorFlow programs. To detect TensorFlow-specific
bugs, we have introduced the first constraint-based approach
for detecting TensorFlow shape-related errors and developed
an associated static tool, SHAPETRACER. We have applied
SHAPETRACER to a set of 60 industrial TensorFlow programs,
showing that SHAPETRACER is both efficient (by analyzing a
program in at most 3 seconds) and effective (by detecting 40
out of 60 industrial TensorFlow program bugs, with no false
positives). SHAPETRACER is now deployed in the PLATFORM-
X platform and will be publicly available soon.
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