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Crash Recovery

Recovery must be a first-class operation of distributed systems1.

Nodes can crash due to different reasons.2

1Brian F Cooper et al. (2010). “Benchmarking cloud serving systems with YCSB”. In: Proceedings of the 1st ACM symposium on Cloud computing. ACM,
pp. 143–154.

2Haryadi S Gunawi et al. (2014). “What bugs live in the cloud? a study of 3000+ issues in cloud systems”. In: Proceedings of the ACM Symposium on Cloud
Computing. ACM, pp. 1–14.Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 2 / 29
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Crash Recovery

Recovery must be a first-class operation of distributed systems3.
Node Crash Events can be common in a large cluster(At least 180).4

3Brian F Cooper et al. (2010). “Benchmarking cloud serving systems with YCSB”. In: Proceedings of the 1st ACM symposium on Cloud computing. ACM,
pp. 143–154.

4Mohammad Reza Mesbahi, Amir Masoud Rahmani, and Mehdi Hosseinzadeh (2017). “Cloud dependability analysis: Characterizing google cluster
infrastructure reliability”. In: 2017 3th International Conference on Web Research (ICWR). IEEE, pp. 56–61.
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Crash-Recovery Bugs and Detection

Crash Recovery Code can be buggy and often result in catastrophic failure.5

Existing detection approaches

Random fault injection: Ineffective6.
Model checking: Inefficient and requires manual specifications7.

Crash-Recovery bugs still widely exist in distributed system.8

Distributed systems have large state space to explore.
Crash-Recovery bugs can only be triggered when nodes crash under special timing
conditions.

5Haryadi S Gunawi et al. (2014). “What bugs live in the cloud? a study of 3000+ issues in cloud systems”. In: Proceedings of the ACM Symposium on Cloud
Computing. ACM, pp. 1–14.

6Haopeng Liu et al. (2018). “Fcatch: Automatically detecting time-of-fault bugs in cloud systems”. In: ACM SIGPLAN Notices 53.2, pp. 419–431.
7Tanakorn Leesatapornwongsa et al. (2014). “{SAMC}: Semantic-Aware Model Checking for Fast Discovery of Deep Bugs in Cloud Systems”. In: 11th

{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 14), pp. 399–414.
8Yu Gao et al. (2018). “An Empirical Study on Crash Recovery Bugs in Large-Scale Distributed Systems”. In: Proceedings of the 26th ACM Joint European

Software Engineering Conference and Symposium on the Foundations of Software Engineering. ESEC/FSE 2018.
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This paper: CrashTuner

A new approach to automatically detect crash-recovery bugs in distributed
systems .

21 new crash-recovery bugs (including 10 critical bugs).
Test 5 distributed systems in 35 hours.

Bug ID Priority Scenario Status Symptom Meta-info

YARN-9238 Critical pre-read Fixed Allocating containers to removed ApplicationAttempt ApplicationAttemptId
YARN-9165 Critical pre-read Fixed Scheduling the removed container ContainerId
YARN-9193 Critical pre-read Fixed Allocating container to removed node NodeId

YARN-9164(2) Critical pre-read Fixed Cluster down due to using the removed node NodeId
YARN-9201 Major pre-read Fixed Invalid event for current state of ApplicationAttempt ContainerId

HDFS-14216(2) Critical pre-read Fixed Request fails due to removed node DataNodeInfo
YARN-9194 Critical pre-read Fixed Invalid event for current state of ApplicationAttempt ApplicationId

HBASE-22041 Critical post-write Unresolved Master startup node hang ServerName
HBASE-22017 Critical pre-read Fixed Master fails to become active due to removed node ServerName
YARN-8650(2) Major pre-read Fixed Invalid event for current state of Container ContainerId

YARN-9248 Major pre-read Fixed Invalid event for current state of Container ApplicationAttemptId
YARN-8649 Major pre-read Fixed Resource Leak due to removed container ApplicationId

HBASE-21740 Major post-write Fixed Shutdown during initialization causing abort MetricsRegionServer
HBASE-22050 Major pre-read Unresolved Atomic violation causing shutdown aborts RegionInfo
HDFS-14372 Major pre-read fixed Shutdown before register causing abort BPOfferService

MR-7178 Major post-write Unresolved Shutdown during initialization causing abort TaskAttemptId
HBASE-22023 Trivial post-write Unresolved Shutdown during initialization causing abort MetricsRegionServer

CA-15131 Normal pre-read Unresolved Request fails due to using removed node InetAddressAndPort

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 5 / 29

https://issues.apache.org/jira/browse/YARN-9238
https://issues.apache.org/jira/browse/YARN-9165
https://issues.apache.org/jira/browse/YARN-9193
https://issues.apache.org/jira/browse/YARN-9164
https://issues.apache.org/jira/browse/YARN-9201
https://issues.apache.org/jira/browse/HDFS-14216
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https://issues.apache.org/jira/browse/YARN-8650
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https://issues.apache.org/jira/browse/HBASE-22050
https://issues.apache.org/jira/browse/HDFS-14372
https://issues.apache.org/jira/browse/MAPREDUCE-7178
https://issues.apache.org/jira/browse/HBASE-22023
https://issues.apache.org/jira/browse/CASSANDRA-15131
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The paper: CrashTuner

How does CrashTuner do it?
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Findings
Existing Crash-Recovery bugs can be easily triggered when nodes:

Crash before reading variables
Crash after writing variables .

One thing in common : All these variables are meta-info variables.

Figure: 116 Crash-Recovery Bugs from four distributed Systems.
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What are meta-info variables?

A simplified YARN example

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 8 / 29



Job_1



Job_1

Application_1



Job_1

Application_1

AppAttempt_1



Job_1

Application_1

AppAttempt_1

Container0

Node_0



Job_1

Application_1

AppAttempt_1

Container0

Node_0

Task_1 Task_m



Job_1

Application_1

AppAttempt_1

Container0

Node_0

Task_1

TaskAttempt_1

Task_m

TaskAttempt_m



Job_1

Application_1

AppAttempt_1

Container0

Node_0

Task_1

TaskAttempt_1

Container1

Node_1

Task_m

TaskAttempt_m

Container_m

Node_N



Job_1

Application_1

AppAttempt_1

Container0

Node_0

Task_1

TaskAttempt_1

Container1

Node_1

Task_m

TaskAttempt_m

Container_m

Node_N

TaskAttempt_m1

Container_k

Node_K

AppAttempt_2

Container_L

Node_L

Meta-info: Nodes, Jobs, 
Tasks, Applications,
Containers, Attempt, 

Session…

Abstracted state     



Job_1

Application_1

AppAttempt_1

Container0

Node_0

Task_1

TaskAttempt_1

Container1

Node_1

Task_m

TaskAttempt_m

Container_m

Node_N

TaskAttempt_m1

Container_k

Node_K

AppAttempt_2

Container_L

Node_L

Instance of abstraction                       
Node_1,

Node_m, Job_1, task_m……
High Level System State

Meta-info value:



Job_1

Application_1

AppAttempt_1

Container0

Node_0

Task_1

TaskAttempt_1

Container1

Node_1

Task_m

TaskAttempt_m

Container_m

Node_N

Meta-info
Variables

Meta-info
Variables



CrashTuner

Bug Example

Node Crashes before Reading
meta-info variables

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 9 / 29
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New Bug (YARN-9238) detected by CrashTuner

YARN@Node1 Recovery Task1@Node2

meta-info variable
task 1

uninitialized
task 2

(1)detection

(2)update

(3)
rea

d

allocate
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How CrashTuner Detected it?

Inject sleep and crash before reading the variable
YARN@Node1 Recovery Task1@Node2

task 1

uninitialized
task 2

(2)update

(1
)re

ad

Sleep
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Bug Example

Node Crashes after writing meta-info
variables
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New Bug (HBASE-22041) detected by CrashTuner

HMaster@node1 CluterTracker

Recovery Zookeeper

slave@node2
meta-info variable

onlineServers

(1)heartbeat
(2)write

(3)register

(4)crash

(5)rem
ove (3)register

(4)crash

(5)rem
ove

(6
)re

ad
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How CrashTuner detected it

Inject crash after writing the variable
HMaster@node1 CluterTracker slave@node2

onlineServers

(1)heartbeat
(1)write

(6
)re

ad
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Meta-info variable identification

How to find meta-info variables?
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Meta-info variable Identification
Node referencing variables are meta-info variables.

Meta-info variable

LOG.info(”NodeManager from node ” + address + ” is assigned ” + nodeId)

NodeManager from node (.*) is assigned (.*)

hadoop14 is assigned hadoop14:8088

Hostname, meta-info value
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CrashTuner

Meta-info variable Identification

Variables related to meta-info variable are meta-info variables.
Appearing in a same log instance.

Meta-info variable

LOG.info(”Assigned Container” + containerId + ” on host ” + nodeId)

Meta-info variable

LOG.info(”Assigned Container” + containerId + ” to ” + attempt)

Meta-info variable
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Meta-info variable Identification

Type based static analysis to discover meta-info variables not
logged.

1 /* - tracks the state of all cluster nodes*/
2 public class ClusterNodeTracker<N extends SchedulerNode> {
3 private HashMap<NodeId, N> nodes = new HashMap<>();
4 }
5

Meta-info type Meta-info variable
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Crash Point

Pre-read points of meta-info variables.

Post-write points of meta-info variables.
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Crash Point

Pre-read points of meta-info variables.
Post-write points of meta-info variables.
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Node to Crash
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Node to Crash

Which node to Crash ?
Job@Node1 Task1@Node2

read or write

Target NodeCrash Point

Crash node2 at the crash point in node1.
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Container_2 and attempt_2 on hadoop15

Inferring the Target Node
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Evaluations

Table: Five distributed Systems under testing(Cassandra is not our bug-studied system).

System Configure Change Workload
Hadoop2/Yarn enable opportunistic Wordcount

HDFS — TestDFSIO,curl
HBase — PE,curl

Zookeeper — Smoketest
Cassandra — Stress
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Evaluations

Table: The number of meta-info and crash point and test time.

System
# Meta-info # Crash Points

Test time(h)
Types Fields Access Points Static Dynamic

Hadoop2/Yarn 107 1,251 5,109 1,524 453 17.39
HBase 34 733 4,032 920 257 8.27
HDFS 43 315 1,924 495 237 8.65

ZooKeeper 3 13 90 41 40 0.27
Cassandra 1 122 666 197 69 1.10

total 188 2,434 11,821 3,177 1,056 35.68
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CrashTuner reduces 99.91%
unnecessary crash points
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CrashTuner reports 21 new bugs, 16 of them are already fixed

Bug ID Type Status Symptom Meta-info
YARN-1 pre-read Fixed Invalid event for current state of ApplicationAttempt ContainerId
YARN-2 pre-read Fixed Invalid event for current state of ApplicationAttempt ApplicationId
YARN-3 pre-read Fixed Scheduling the removed container ContainerId
YARN-4 pre-read Fixed Allocating container to removed node NodeID

YARN-5(2) pre-read Fixed Cluster down due to using the lost node NodeID
YARN-7(2) pre-read Fixed Invalid event for current state of Container ContainerId

YARN-9 pre-read Fixed Invalid event for current state of Container ApplicationAttemptId
YARN-10 pre-read Fixed Resource Leak while Localizing file ApplicationId
YARN-11 pre-read Fixed Allocating containers to removed ApplicationAttempt ApplicationAttemptId

HBASE-12 post-write Fixed Shutdown before initialization causing abort ServerName
HBASE-13 pre-read Unresolved Atomic violation causing shutdown fails RegionInfo
HBASE-14 post-write Unresolved Master startup hang and print thousands of logs ServerName
HBASE-15 post-write Unresolved Shutdown before initialization causing abort ServerName
HBASE-16 pre-read Fixed Master Fails to become active due to LeaseException ServerName
HDFS-17 pre-read Fixed Shutdown before register causing abort DatanodeID

HDFS-18(2) pre-read Fixed Request fails due to removed node DataNodeInfo
MR-20 post-write Unresolved Shutdown before initialization causing abort TaskAttemptId
CA-21 pre-read Unresolved Request fails due to removed node InetAddressAndPort
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Comparing to other fault injection strategies

CrashTuner report one bug in 50.29 runs within 1.70 hours.
Random fault injection: 3 bugs, 1 bug per 5000 runs within 90.83 hours
IO around crash injection, 1 bugs, 1 bug per 4500 runs within 156.88 hours
All bugs can be detected by CrashTuner.
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CrashTuner is much more Efficient and
Effective than random crash injection and IO

around crash injection
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Limitations and Future Work

CrashTuner maybe not good enough to test system with Bad Log Quality.
– Developer can annotate the meta-info type.

CrashTuner only inject one crash.
– We can extend CrashTuner to test two or more crash events.

CrashTuner only test Java based system.
– Our study on k8s (implemented with Golang) shows that it also have meta-info related

crash-recovery bugs.
– We are extending CrashTuner to work with System written by Golang and C++.
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Relate Works

Crash-recovery bug studies.
– CBSDB9,TaxDC10, CREB11

Crash-recovery bug detection
– Fault injection:Fate12,Fcatch13

– Model checking:FlyMC[EuroSys2019],SAMC[OSDI2014]
Log analysis for distribute systems

– Stitch[OSDI2016], lprof[OSDI2014]

9Haryadi S Gunawi et al. (2014). “What bugs live in the cloud? a study of 3000+ issues in cloud systems”. In: Proceedings of the ACM Symposium on Cloud
Computing. ACM, pp. 1–14.

10Tanakorn Leesatapornwongsa et al. (2016). “TaxDC: A Taxonomy of Non-Deterministic Concurrency Bugs in Datacenter Distributed Systems”. In: Proceedings
of the Twenty-First International Conference on Architectural Support for Programming Languages and Operating Systems. ASPLOS ’16. Atlanta, Georgia, USA:
ACM, pp. 517–530. ISBN: 978-1-4503-4091-5. DOI: 10.1145/2872362.2872374. URL: http://doi.acm.org/10.1145/2872362.2872374.

11Yu Gao et al. (2018). “An Empirical Study on Crash Recovery Bugs in Large-Scale Distributed Systems”. In: Proceedings of the 26th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software Engineering. ESEC/FSE 2018.

12Haryadi S Gunawi et al. (2011). “FATE and DESTINI: A framework for cloud recovery testing”. In: Proceedings of NSDI’11: 8th USENIX Symposium on
Networked Systems Design and Implementation, p. 239.

13Haopeng Liu et al. (2018). “Fcatch: Automatically detecting time-of-fault bugs in cloud systems”. In: ACM SIGPLAN Notices 53.2, pp. 419–431.
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Conclusion

Abstraction is so fundamental that sometimes we forget its importance!14

—Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau

14Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau (2018). Operating Systems: Three Easy Pieces. 1.00. Arpaci-Dusseau Books.
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—Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau

Meta-info is a well-suited abstraction for distributed
systems!

14Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau (2018). Operating Systems: Three Easy Pieces. 1.00. Arpaci-Dusseau Books.
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Thank you!
Any Questions?


	Appendix

