
CrashTuner

CrashTuner: Detecting Crash Recovery Bugs
in Cloud Systems via Meta-info Analysis

n SOSP2019 N

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng
Feng Tan, Jun Yang, Liang You

Institute of Computing Technology, Chinese Academy of Sciences

University of Chinese Academy of Sciences. Alibaba Group

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 1 / 29

CrashTuner

Crash Recovery

Recovery must be a first-class operation of distributed systems1.

Nodes can crash due to different reasons.2

1Brian F Cooper et al. (2010). “Benchmarking cloud serving systems with YCSB”. In: Proceedings of the 1st ACM symposium on Cloud computing. ACM,
pp. 143–154.

2Haryadi S Gunawi et al. (2014). “What bugs live in the cloud? a study of 3000+ issues in cloud systems”. In: Proceedings of the ACM Symposium on Cloud
Computing. ACM, pp. 1–14.Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 2 / 29

CrashTuner

Crash Recovery

Recovery must be a first-class operation of distributed systems1.
Nodes can crash due to different reasons.2

1Brian F Cooper et al. (2010). “Benchmarking cloud serving systems with YCSB”. In: Proceedings of the 1st ACM symposium on Cloud computing. ACM,
pp. 143–154.

2Haryadi S Gunawi et al. (2014). “What bugs live in the cloud? a study of 3000+ issues in cloud systems”. In: Proceedings of the ACM Symposium on Cloud
Computing. ACM, pp. 1–14.Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 2 / 29

CrashTuner

Crash Recovery

Recovery must be a first-class operation of distributed systems3.
Node Crash Events can be common in a large cluster(At least 180).4

3Brian F Cooper et al. (2010). “Benchmarking cloud serving systems with YCSB”. In: Proceedings of the 1st ACM symposium on Cloud computing. ACM,
pp. 143–154.

4Mohammad Reza Mesbahi, Amir Masoud Rahmani, and Mehdi Hosseinzadeh (2017). “Cloud dependability analysis: Characterizing google cluster
infrastructure reliability”. In: 2017 3th International Conference on Web Research (ICWR). IEEE, pp. 56–61.
Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 3 / 29

CrashTuner

Crash-Recovery Bugs and Detection

Crash Recovery Code can be buggy and often result in catastrophic failure.5

Existing detection approaches

Random fault injection: Ineffective6.
Model checking: Inefficient and requires manual specifications7.

Crash-Recovery bugs still widely exist in distributed system.8

Distributed systems have large state space to explore.
Crash-Recovery bugs can only be triggered when nodes crash under special timing
conditions.

5Haryadi S Gunawi et al. (2014). “What bugs live in the cloud? a study of 3000+ issues in cloud systems”. In: Proceedings of the ACM Symposium on Cloud
Computing. ACM, pp. 1–14.

6Haopeng Liu et al. (2018). “Fcatch: Automatically detecting time-of-fault bugs in cloud systems”. In: ACM SIGPLAN Notices 53.2, pp. 419–431.
7Tanakorn Leesatapornwongsa et al. (2014). “{SAMC}: Semantic-Aware Model Checking for Fast Discovery of Deep Bugs in Cloud Systems”. In: 11th

{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 14), pp. 399–414.
8Yu Gao et al. (2018). “An Empirical Study on Crash Recovery Bugs in Large-Scale Distributed Systems”. In: Proceedings of the 26th ACM Joint European

Software Engineering Conference and Symposium on the Foundations of Software Engineering. ESEC/FSE 2018.

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 4 / 29

CrashTuner

Crash-Recovery Bugs and Detection

Crash Recovery Code can be buggy and often result in catastrophic failure.5

Existing detection approaches

Random fault injection: Ineffective6.
Model checking: Inefficient and requires manual specifications7.

Crash-Recovery bugs still widely exist in distributed system.8

Distributed systems have large state space to explore.
Crash-Recovery bugs can only be triggered when nodes crash under special timing
conditions.

5Haryadi S Gunawi et al. (2014). “What bugs live in the cloud? a study of 3000+ issues in cloud systems”. In: Proceedings of the ACM Symposium on Cloud
Computing. ACM, pp. 1–14.

6Haopeng Liu et al. (2018). “Fcatch: Automatically detecting time-of-fault bugs in cloud systems”. In: ACM SIGPLAN Notices 53.2, pp. 419–431.
7Tanakorn Leesatapornwongsa et al. (2014). “{SAMC}: Semantic-Aware Model Checking for Fast Discovery of Deep Bugs in Cloud Systems”. In: 11th

{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 14), pp. 399–414.
8Yu Gao et al. (2018). “An Empirical Study on Crash Recovery Bugs in Large-Scale Distributed Systems”. In: Proceedings of the 26th ACM Joint European

Software Engineering Conference and Symposium on the Foundations of Software Engineering. ESEC/FSE 2018.

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 4 / 29

CrashTuner

Crash-Recovery Bugs and Detection

Crash Recovery Code can be buggy and often result in catastrophic failure.5

Existing detection approaches
Random fault injection: Ineffective6.

Model checking: Inefficient and requires manual specifications7.

Crash-Recovery bugs still widely exist in distributed system.8

Distributed systems have large state space to explore.
Crash-Recovery bugs can only be triggered when nodes crash under special timing
conditions.

5Haryadi S Gunawi et al. (2014). “What bugs live in the cloud? a study of 3000+ issues in cloud systems”. In: Proceedings of the ACM Symposium on Cloud
Computing. ACM, pp. 1–14.

6Haopeng Liu et al. (2018). “Fcatch: Automatically detecting time-of-fault bugs in cloud systems”. In: ACM SIGPLAN Notices 53.2, pp. 419–431.
7Tanakorn Leesatapornwongsa et al. (2014). “{SAMC}: Semantic-Aware Model Checking for Fast Discovery of Deep Bugs in Cloud Systems”. In: 11th

{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 14), pp. 399–414.
8Yu Gao et al. (2018). “An Empirical Study on Crash Recovery Bugs in Large-Scale Distributed Systems”. In: Proceedings of the 26th ACM Joint European

Software Engineering Conference and Symposium on the Foundations of Software Engineering. ESEC/FSE 2018.

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 4 / 29

CrashTuner

Crash-Recovery Bugs and Detection

Crash Recovery Code can be buggy and often result in catastrophic failure.5

Existing detection approaches
Random fault injection: Ineffective6.
Model checking: Inefficient and requires manual specifications7.

Crash-Recovery bugs still widely exist in distributed system.8

Distributed systems have large state space to explore.
Crash-Recovery bugs can only be triggered when nodes crash under special timing
conditions.

5Haryadi S Gunawi et al. (2014). “What bugs live in the cloud? a study of 3000+ issues in cloud systems”. In: Proceedings of the ACM Symposium on Cloud
Computing. ACM, pp. 1–14.

6Haopeng Liu et al. (2018). “Fcatch: Automatically detecting time-of-fault bugs in cloud systems”. In: ACM SIGPLAN Notices 53.2, pp. 419–431.
7Tanakorn Leesatapornwongsa et al. (2014). “{SAMC}: Semantic-Aware Model Checking for Fast Discovery of Deep Bugs in Cloud Systems”. In: 11th

{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 14), pp. 399–414.
8Yu Gao et al. (2018). “An Empirical Study on Crash Recovery Bugs in Large-Scale Distributed Systems”. In: Proceedings of the 26th ACM Joint European

Software Engineering Conference and Symposium on the Foundations of Software Engineering. ESEC/FSE 2018.

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 4 / 29

CrashTuner

Crash-Recovery Bugs and Detection

Crash Recovery Code can be buggy and often result in catastrophic failure.5

Existing detection approaches
Random fault injection: Ineffective6.
Model checking: Inefficient and requires manual specifications7.

Crash-Recovery bugs still widely exist in distributed system.8

Distributed systems have large state space to explore.
Crash-Recovery bugs can only be triggered when nodes crash under special timing
conditions.

5Haryadi S Gunawi et al. (2014). “What bugs live in the cloud? a study of 3000+ issues in cloud systems”. In: Proceedings of the ACM Symposium on Cloud
Computing. ACM, pp. 1–14.

6Haopeng Liu et al. (2018). “Fcatch: Automatically detecting time-of-fault bugs in cloud systems”. In: ACM SIGPLAN Notices 53.2, pp. 419–431.
7Tanakorn Leesatapornwongsa et al. (2014). “{SAMC}: Semantic-Aware Model Checking for Fast Discovery of Deep Bugs in Cloud Systems”. In: 11th

{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 14), pp. 399–414.
8Yu Gao et al. (2018). “An Empirical Study on Crash Recovery Bugs in Large-Scale Distributed Systems”. In: Proceedings of the 26th ACM Joint European

Software Engineering Conference and Symposium on the Foundations of Software Engineering. ESEC/FSE 2018.

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 4 / 29

CrashTuner

Crash-Recovery Bugs and Detection

Crash Recovery Code can be buggy and often result in catastrophic failure.5

Existing detection approaches
Random fault injection: Ineffective6.
Model checking: Inefficient and requires manual specifications7.

Crash-Recovery bugs still widely exist in distributed system.8

Distributed systems have large state space to explore.

Crash-Recovery bugs can only be triggered when nodes crash under special timing
conditions.

5Haryadi S Gunawi et al. (2014). “What bugs live in the cloud? a study of 3000+ issues in cloud systems”. In: Proceedings of the ACM Symposium on Cloud
Computing. ACM, pp. 1–14.

6Haopeng Liu et al. (2018). “Fcatch: Automatically detecting time-of-fault bugs in cloud systems”. In: ACM SIGPLAN Notices 53.2, pp. 419–431.
7Tanakorn Leesatapornwongsa et al. (2014). “{SAMC}: Semantic-Aware Model Checking for Fast Discovery of Deep Bugs in Cloud Systems”. In: 11th

{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 14), pp. 399–414.
8Yu Gao et al. (2018). “An Empirical Study on Crash Recovery Bugs in Large-Scale Distributed Systems”. In: Proceedings of the 26th ACM Joint European

Software Engineering Conference and Symposium on the Foundations of Software Engineering. ESEC/FSE 2018.

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 4 / 29

CrashTuner

Crash-Recovery Bugs and Detection

Crash Recovery Code can be buggy and often result in catastrophic failure.5

Existing detection approaches
Random fault injection: Ineffective6.
Model checking: Inefficient and requires manual specifications7.

Crash-Recovery bugs still widely exist in distributed system.8

Distributed systems have large state space to explore.
Crash-Recovery bugs can only be triggered when nodes crash under special timing
conditions.

5Haryadi S Gunawi et al. (2014). “What bugs live in the cloud? a study of 3000+ issues in cloud systems”. In: Proceedings of the ACM Symposium on Cloud
Computing. ACM, pp. 1–14.

6Haopeng Liu et al. (2018). “Fcatch: Automatically detecting time-of-fault bugs in cloud systems”. In: ACM SIGPLAN Notices 53.2, pp. 419–431.
7Tanakorn Leesatapornwongsa et al. (2014). “{SAMC}: Semantic-Aware Model Checking for Fast Discovery of Deep Bugs in Cloud Systems”. In: 11th

{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 14), pp. 399–414.
8Yu Gao et al. (2018). “An Empirical Study on Crash Recovery Bugs in Large-Scale Distributed Systems”. In: Proceedings of the 26th ACM Joint European

Software Engineering Conference and Symposium on the Foundations of Software Engineering. ESEC/FSE 2018.

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 4 / 29

CrashTuner

This paper: CrashTuner

A new approach to automatically detect crash-recovery bugs in distributed
systems .

21 new crash-recovery bugs (including 10 critical bugs).
Test 5 distributed systems in 35 hours.

Bug ID Priority Scenario Status Symptom Meta-info

YARN-9238 Critical pre-read Fixed Allocating containers to removed ApplicationAttempt ApplicationAttemptId
YARN-9165 Critical pre-read Fixed Scheduling the removed container ContainerId
YARN-9193 Critical pre-read Fixed Allocating container to removed node NodeId

YARN-9164(2) Critical pre-read Fixed Cluster down due to using the removed node NodeId
YARN-9201 Major pre-read Fixed Invalid event for current state of ApplicationAttempt ContainerId

HDFS-14216(2) Critical pre-read Fixed Request fails due to removed node DataNodeInfo
YARN-9194 Critical pre-read Fixed Invalid event for current state of ApplicationAttempt ApplicationId

HBASE-22041 Critical post-write Unresolved Master startup node hang ServerName
HBASE-22017 Critical pre-read Fixed Master fails to become active due to removed node ServerName
YARN-8650(2) Major pre-read Fixed Invalid event for current state of Container ContainerId

YARN-9248 Major pre-read Fixed Invalid event for current state of Container ApplicationAttemptId
YARN-8649 Major pre-read Fixed Resource Leak due to removed container ApplicationId

HBASE-21740 Major post-write Fixed Shutdown during initialization causing abort MetricsRegionServer
HBASE-22050 Major pre-read Unresolved Atomic violation causing shutdown aborts RegionInfo
HDFS-14372 Major pre-read fixed Shutdown before register causing abort BPOfferService

MR-7178 Major post-write Unresolved Shutdown during initialization causing abort TaskAttemptId
HBASE-22023 Trivial post-write Unresolved Shutdown during initialization causing abort MetricsRegionServer

CA-15131 Normal pre-read Unresolved Request fails due to using removed node InetAddressAndPort

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 5 / 29

https://issues.apache.org/jira/browse/YARN-9238
https://issues.apache.org/jira/browse/YARN-9165
https://issues.apache.org/jira/browse/YARN-9193
https://issues.apache.org/jira/browse/YARN-9164
https://issues.apache.org/jira/browse/YARN-9201
https://issues.apache.org/jira/browse/HDFS-14216
https://issues.apache.org/jira/browse/YARN-9194
https://issues.apache.org/jira/browse/HBASE-22041
https://issues.apache.org/jira/browse/HBASE-22017
https://issues.apache.org/jira/browse/YARN-8650
https://issues.apache.org/jira/browse/YARN-9248
https://issues.apache.org/jira/browse/YARN-8649
https://issues.apache.org/jira/browse/HBASE-21740
https://issues.apache.org/jira/browse/HBASE-22050
https://issues.apache.org/jira/browse/HDFS-14372
https://issues.apache.org/jira/browse/MAPREDUCE-7178
https://issues.apache.org/jira/browse/HBASE-22023
https://issues.apache.org/jira/browse/CASSANDRA-15131

CrashTuner

The paper: CrashTuner

How does CrashTuner do it?

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 6 / 29

CrashTuner

Findings
Existing Crash-Recovery bugs can be easily triggered when nodes:

Crash before reading variables
Crash after writing variables .

One thing in common : All these variables are meta-info variables.

Figure: 116 Crash-Recovery Bugs from four distributed Systems.

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 7 / 29

CrashTuner

Findings
Existing Crash-Recovery bugs can be easily triggered when nodes:

Crash before reading variables

Crash after writing variables .

One thing in common : All these variables are meta-info variables.

Figure: 116 Crash-Recovery Bugs from four distributed Systems.

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 7 / 29

CrashTuner

Findings
Existing Crash-Recovery bugs can be easily triggered when nodes:

Crash before reading variables
Crash after writing variables .

One thing in common : All these variables are meta-info variables.

Figure: 116 Crash-Recovery Bugs from four distributed Systems.

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 7 / 29

CrashTuner

Findings
Existing Crash-Recovery bugs can be easily triggered when nodes:

Crash before reading variables
Crash after writing variables .

One thing in common : All these variables are meta-info variables.

Figure: 116 Crash-Recovery Bugs from four distributed Systems.

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 7 / 29

CrashTuner

What are meta-info variables?

A simplified YARN example

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 8 / 29

Job_1

Job_1

Application_1

Job_1

Application_1

AppAttempt_1

Job_1

Application_1

AppAttempt_1

Container0

Node_0

Job_1

Application_1

AppAttempt_1

Container0

Node_0

Task_1 Task_m

Job_1

Application_1

AppAttempt_1

Container0

Node_0

Task_1

TaskAttempt_1

Task_m

TaskAttempt_m

Job_1

Application_1

AppAttempt_1

Container0

Node_0

Task_1

TaskAttempt_1

Container1

Node_1

Task_m

TaskAttempt_m

Container_m

Node_N

Job_1

Application_1

AppAttempt_1

Container0

Node_0

Task_1

TaskAttempt_1

Container1

Node_1

Task_m

TaskAttempt_m

Container_m

Node_N

TaskAttempt_m1

Container_k

Node_K

AppAttempt_2

Container_L

Node_L

Meta-info: Nodes, Jobs,
Tasks, Applications,
Containers, Attempt,

Session…

Abstracted state

Job_1

Application_1

AppAttempt_1

Container0

Node_0

Task_1

TaskAttempt_1

Container1

Node_1

Task_m

TaskAttempt_m

Container_m

Node_N

TaskAttempt_m1

Container_k

Node_K

AppAttempt_2

Container_L

Node_L

Instance of abstraction
Node_1,

Node_m, Job_1, task_m……
High Level System State

Meta-info value:

Job_1

Application_1

AppAttempt_1

Container0

Node_0

Task_1

TaskAttempt_1

Container1

Node_1

Task_m

TaskAttempt_m

Container_m

Node_N

Meta-info
Variables

Meta-info
Variables

CrashTuner

Bug Example

Node Crashes before Reading
meta-info variables

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 9 / 29

CrashTuner

New Bug (YARN-9238) detected by CrashTuner

YARN@Node1 Recovery Task1@Node2

meta-info variable
task 1

uninitialized
task 2

(1)detection

(2)update

(3)
rea

d

allocate

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 10 / 29

CrashTuner

New Bug (YARN-9238) detected by CrashTuner

YARN@Node1 Recovery Task1@Node2

meta-info variable
task 1

uninitialized
task 2

(1)detection

(2)update

(3)
rea

d

allocate

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 10 / 29

CrashTuner

New Bug (YARN-9238) detected by CrashTuner

YARN@Node1 Recovery Task1@Node2

meta-info variable
task 1

uninitialized
task 2

(1)detection

(2)update

(3)
rea

d

allocate

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 10 / 29

CrashTuner

New Bug (YARN-9238) detected by CrashTuner

YARN@Node1 Recovery Task1@Node2

meta-info variable
task 1

uninitialized
task 2

(1)detection

(2)update

(3)
rea

d

allocate

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 10 / 29

CrashTuner

New Bug (YARN-9238) detected by CrashTuner

YARN@Node1 Recovery Task1@Node2

meta-info variable
task 1

uninitialized
task 2

(1)detection

(2)update

(3)
rea

d

allocate

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 10 / 29

CrashTuner

New Bug (YARN-9238) detected by CrashTuner

YARN@Node1 Recovery Task1@Node2

meta-info variable
task 1

uninitialized
task 2

(1)detection

(2)update

(3)
rea

d

allocate

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 10 / 29

CrashTuner

How CrashTuner Detected it?

Inject sleep and crash before reading the variable
YARN@Node1 Recovery Task1@Node2

task 1

uninitialized
task 2

(2)update

(1
)re

ad

Sleep

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 11 / 29

CrashTuner

How CrashTuner Detected it?

Inject sleep and crash before reading the variable
YARN@Node1 Recovery Task1@Node2

task 1

uninitialized
task 2

(2)update

(1
)re

ad
Sleep

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 11 / 29

CrashTuner

How CrashTuner Detected it?

Inject sleep and crash before reading the variable
YARN@Node1 Recovery Task1@Node2

task 1

uninitialized
task 2

(2)update(1
)re

ad
Sleep

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 11 / 29

CrashTuner

How CrashTuner Detected it?

Inject sleep and crash before reading the variable
YARN@Node1 Recovery Task1@Node2

task 1

uninitialized
task 2

(2)update(1
)re

ad

Sleep

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 11 / 29

CrashTuner

Bug Example

Node Crashes after writing meta-info
variables

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 12 / 29

CrashTuner

New Bug (HBASE-22041) detected by CrashTuner

HMaster@node1 CluterTracker

Recovery Zookeeper

slave@node2
meta-info variable

onlineServers

(1)heartbeat
(2)write

(3)register

(4)crash

(5)rem
ove (3)register

(4)crash

(5)rem
ove

(6
)re

ad

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 13 / 29

CrashTuner

New Bug (HBASE-22041) detected by CrashTuner

HMaster@node1 CluterTracker

Recovery Zookeeper

slave@node2
meta-info variable

onlineServers (1)heartbeat

(2)write

(3)register

(4)crash

(5)rem
ove (3)register

(4)crash

(5)rem
ove

(6
)re

ad

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 13 / 29

CrashTuner

New Bug (HBASE-22041) detected by CrashTuner

HMaster@node1 CluterTracker

Recovery Zookeeper

slave@node2
meta-info variable

onlineServers (1)heartbeat
(2)write

(3)register

(4)crash

(5)rem
ove (3)register

(4)crash

(5)rem
ove

(6
)re

ad

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 13 / 29

CrashTuner

New Bug (HBASE-22041) detected by CrashTuner

HMaster@node1 CluterTracker

Recovery Zookeeper

slave@node2
meta-info variable

onlineServers (1)heartbeat
(2)write

(3)register

(4)crash

(5)rem
ove (3)register

(4)crash

(5)rem
ove

(6
)re

ad

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 13 / 29

CrashTuner

New Bug (HBASE-22041) detected by CrashTuner

HMaster@node1 CluterTracker

Recovery Zookeeper

slave@node2
meta-info variable

onlineServers (1)heartbeat
(2)write

(3)register

(4)crash

(5)rem
ove

(3)register

(4)crash

(5)rem
ove

(6
)re

ad

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 13 / 29

CrashTuner

New Bug (HBASE-22041) detected by CrashTuner

HMaster@node1 CluterTracker

Recovery Zookeeper

slave@node2
meta-info variable

onlineServers (1)heartbeat
(2)write

(3)register

(4)crash

(5)rem
ove

(3)register

(4)crash

(5)rem
ove

(6
)re

ad

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 13 / 29

CrashTuner

New Bug (HBASE-22041) detected by CrashTuner

HMaster@node1 CluterTracker

Recovery Zookeeper

slave@node2
meta-info variable

onlineServers (1)heartbeat
(2)write

(3)register

(4)crash

(5)rem
ove

(3)register

(4)crash

(5)rem
ove

(6
)re

ad

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 13 / 29

CrashTuner

How CrashTuner detected it

Inject crash after writing the variable
HMaster@node1 CluterTracker slave@node2

onlineServers

(1)heartbeat
(1)write

(6
)re

ad

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 14 / 29

CrashTuner

How CrashTuner detected it

Inject crash after writing the variable
HMaster@node1 CluterTracker slave@node2

onlineServers (1)heartbeat
(1)write

(6
)re

ad

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 14 / 29

CrashTuner

How CrashTuner detected it

Inject crash after writing the variable
HMaster@node1 CluterTracker slave@node2

onlineServers (1)heartbeat
(1)write

(6
)re

ad

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 14 / 29

CrashTuner

How CrashTuner detected it

Inject crash after writing the variable
HMaster@node1 CluterTracker slave@node2

onlineServers (1)heartbeat
(1)write

(6
)re

ad

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 14 / 29

CrashTuner

Meta-info variable identification

How to find meta-info variables?

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 15 / 29

CrashTuner

Meta-info variable Identification
Node referencing variables are meta-info variables.

Meta-info variable

LOG.info(”NodeManager from node ” + address + ” is assigned ” + nodeId)

NodeManager from node (.*) is assigned (.*)

hadoop14 is assigned hadoop14:8088

Hostname, meta-info value

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 16 / 29

CrashTuner

Meta-info variable Identification
Node referencing variables are meta-info variables.

Meta-info variable

LOG.info(”NodeManager from node ” + address + ” is assigned ” + nodeId)

NodeManager from node (.*) is assigned (.*)

hadoop14 is assigned hadoop14:8088

Hostname, meta-info value

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 16 / 29

CrashTuner

Meta-info variable Identification
Node referencing variables are meta-info variables.

Meta-info variable

LOG.info(”NodeManager from node ” + address + ” is assigned ” + nodeId)

NodeManager from node (.*) is assigned (.*)

hadoop14 is assigned hadoop14:8088

Hostname, meta-info value

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 16 / 29

CrashTuner

Meta-info variable Identification
Node referencing variables are meta-info variables.

Meta-info variable

LOG.info(”NodeManager from node ” + address + ” is assigned ” + nodeId)

NodeManager from node (.*) is assigned (.*)

hadoop14 is assigned hadoop14:8088

Hostname, meta-info value

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 16 / 29

CrashTuner

Meta-info variable Identification
Node referencing variables are meta-info variables.

Meta-info variable

LOG.info(”NodeManager from node ” + address + ” is assigned ” + nodeId)

NodeManager from node (.*) is assigned (.*)

hadoop14 is assigned hadoop14:8088

Hostname, meta-info value

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 16 / 29

CrashTuner

Meta-info variable Identification

Variables related to meta-info variable are meta-info variables.
Appearing in a same log instance.

Meta-info variable

LOG.info(”Assigned Container” + containerId + ” on host ” + nodeId)

Meta-info variable

LOG.info(”Assigned Container” + containerId + ” to ” + attempt)

Meta-info variable

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 17 / 29

CrashTuner

Meta-info variable Identification

Variables related to meta-info variable are meta-info variables.
Appearing in a same log instance.

Meta-info variable

LOG.info(”Assigned Container” + containerId + ” on host ” + nodeId)

Meta-info variable

LOG.info(”Assigned Container” + containerId + ” to ” + attempt)

Meta-info variable

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 17 / 29

CrashTuner

Meta-info variable Identification

Variables related to meta-info variable are meta-info variables.
Appearing in a same log instance.

Meta-info variable

LOG.info(”Assigned Container” + containerId + ” on host ” + nodeId)

Meta-info variable

LOG.info(”Assigned Container” + containerId + ” to ” + attempt)

Meta-info variable

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 17 / 29

CrashTuner

Meta-info variable Identification

Variables related to meta-info variable are meta-info variables.
Appearing in a same log instance.

Meta-info variable

LOG.info(”Assigned Container” + containerId + ” on host ” + nodeId)

Meta-info variable

LOG.info(”Assigned Container” + containerId + ” to ” + attempt)

Meta-info variable

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 17 / 29

CrashTuner

Meta-info variable Identification

Type based static analysis to discover meta-info variables not
logged.

1 /* - tracks the state of all cluster nodes*/
2 public class ClusterNodeTracker<N extends SchedulerNode> {
3 private HashMap<NodeId, N> nodes = new HashMap<>();
4 }
5

Meta-info type Meta-info variable

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 18 / 29

CrashTuner

Crash Point

Pre-read points of meta-info variables.

Post-write points of meta-info variables.

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 19 / 29

CrashTuner

Crash Point

Pre-read points of meta-info variables.
Post-write points of meta-info variables.

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 19 / 29

CrashTuner

Node to Crash

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 20 / 29

CrashTuner

Node to Crash

Which node to Crash ?
Job@Node1 Task1@Node2

read or write

Target NodeCrash Point

Crash node2 at the crash point in node1.

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 21 / 29

Container_1 and attempt_1 on hadoop14

Container_2 and attempt_2 on hadoop15

Inferring the Target Node

Inferring the Target Node

Inferring the Target Node

Inferring the Target Node

CrashTuner

Evaluations

Table: Five distributed Systems under testing(Cassandra is not our bug-studied system).

System Configure Change Workload
Hadoop2/Yarn enable opportunistic Wordcount

HDFS — TestDFSIO,curl
HBase — PE,curl

Zookeeper — Smoketest
Cassandra — Stress

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 22 / 29

CrashTuner

Evaluations

Table: The number of meta-info and crash point and test time.

System
Meta-info # Crash Points

Test time(h)
Types Fields Access Points Static Dynamic

Hadoop2/Yarn 107 1,251 5,109 1,524 453 17.39
HBase 34 733 4,032 920 257 8.27
HDFS 43 315 1,924 495 237 8.65

ZooKeeper 3 13 90 41 40 0.27
Cassandra 1 122 666 197 69 1.10

total 188 2,434 11,821 3,177 1,056 35.68

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 23 / 29

CrashTuner

Evaluations

Table: The number of meta-info and crash point and test time.

System
Meta-info # Crash Points

Test time(h)
Types Fields Access Points Static Dynamic

Hadoop2/Yarn 107 1,251 5,109 1,524 453 17.39
HBase 34 733 4,032 920 257 8.27
HDFS 43 315 1,924 495 237 8.65

ZooKeeper 3 13 90 41 40 0.27
Cassandra 1 122 666 197 69 1.10

total 188 2,434 11,821 3,177 1,056 35.68

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 23 / 29

CrashTuner reduces 99.91%
unnecessary crash points

CrashTuner

CrashTuner reports 21 new bugs, 16 of them are already fixed

Bug ID Type Status Symptom Meta-info
YARN-1 pre-read Fixed Invalid event for current state of ApplicationAttempt ContainerId
YARN-2 pre-read Fixed Invalid event for current state of ApplicationAttempt ApplicationId
YARN-3 pre-read Fixed Scheduling the removed container ContainerId
YARN-4 pre-read Fixed Allocating container to removed node NodeID

YARN-5(2) pre-read Fixed Cluster down due to using the lost node NodeID
YARN-7(2) pre-read Fixed Invalid event for current state of Container ContainerId

YARN-9 pre-read Fixed Invalid event for current state of Container ApplicationAttemptId
YARN-10 pre-read Fixed Resource Leak while Localizing file ApplicationId
YARN-11 pre-read Fixed Allocating containers to removed ApplicationAttempt ApplicationAttemptId

HBASE-12 post-write Fixed Shutdown before initialization causing abort ServerName
HBASE-13 pre-read Unresolved Atomic violation causing shutdown fails RegionInfo
HBASE-14 post-write Unresolved Master startup hang and print thousands of logs ServerName
HBASE-15 post-write Unresolved Shutdown before initialization causing abort ServerName
HBASE-16 pre-read Fixed Master Fails to become active due to LeaseException ServerName
HDFS-17 pre-read Fixed Shutdown before register causing abort DatanodeID

HDFS-18(2) pre-read Fixed Request fails due to removed node DataNodeInfo
MR-20 post-write Unresolved Shutdown before initialization causing abort TaskAttemptId
CA-21 pre-read Unresolved Request fails due to removed node InetAddressAndPort

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 24 / 29

CrashTuner

Comparing to other fault injection strategies

CrashTuner report one bug in 50.29 runs within 1.70 hours.
Random fault injection: 3 bugs, 1 bug per 5000 runs within 90.83 hours
IO around crash injection, 1 bugs, 1 bug per 4500 runs within 156.88 hours
All bugs can be detected by CrashTuner.

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 25 / 29

CrashTuner

Comparing to other fault injection strategies

CrashTuner report one bug in 50.29 runs within 1.70 hours.
Random fault injection: 3 bugs, 1 bug per 5000 runs within 90.83 hours
IO around crash injection, 1 bugs, 1 bug per 4500 runs within 156.88 hours
All bugs can be detected by CrashTuner.

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 25 / 29

CrashTuner is much more Efficient and
Effective than random crash injection and IO

around crash injection

CrashTuner

Limitations and Future Work

CrashTuner maybe not good enough to test system with Bad Log Quality.
– Developer can annotate the meta-info type.

CrashTuner only inject one crash.
– We can extend CrashTuner to test two or more crash events.

CrashTuner only test Java based system.
– Our study on k8s (implemented with Golang) shows that it also have meta-info related

crash-recovery bugs.
– We are extending CrashTuner to work with System written by Golang and C++.

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 26 / 29

CrashTuner

Relate Works

Crash-recovery bug studies.
– CBSDB9,TaxDC10, CREB11

Crash-recovery bug detection
– Fault injection:Fate12,Fcatch13

– Model checking:FlyMC[EuroSys2019],SAMC[OSDI2014]
Log analysis for distribute systems

– Stitch[OSDI2016], lprof[OSDI2014]

9Haryadi S Gunawi et al. (2014). “What bugs live in the cloud? a study of 3000+ issues in cloud systems”. In: Proceedings of the ACM Symposium on Cloud
Computing. ACM, pp. 1–14.

10Tanakorn Leesatapornwongsa et al. (2016). “TaxDC: A Taxonomy of Non-Deterministic Concurrency Bugs in Datacenter Distributed Systems”. In: Proceedings
of the Twenty-First International Conference on Architectural Support for Programming Languages and Operating Systems. ASPLOS ’16. Atlanta, Georgia, USA:
ACM, pp. 517–530. ISBN: 978-1-4503-4091-5. DOI: 10.1145/2872362.2872374. URL: http://doi.acm.org/10.1145/2872362.2872374.

11Yu Gao et al. (2018). “An Empirical Study on Crash Recovery Bugs in Large-Scale Distributed Systems”. In: Proceedings of the 26th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software Engineering. ESEC/FSE 2018.

12Haryadi S Gunawi et al. (2011). “FATE and DESTINI: A framework for cloud recovery testing”. In: Proceedings of NSDI’11: 8th USENIX Symposium on
Networked Systems Design and Implementation, p. 239.

13Haopeng Liu et al. (2018). “Fcatch: Automatically detecting time-of-fault bugs in cloud systems”. In: ACM SIGPLAN Notices 53.2, pp. 419–431.

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 27 / 29

https://doi.org/10.1145/2872362.2872374
http://doi.acm.org/10.1145/2872362.2872374

CrashTuner

Conclusion

Abstraction is so fundamental that sometimes we forget its importance!14

—Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau

14Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau (2018). Operating Systems: Three Easy Pieces. 1.00. Arpaci-Dusseau Books.

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 28 / 29

CrashTuner

Conclusion

Abstraction is so fundamental that sometimes we forget its importance!14

—Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau

Meta-info is a well-suited abstraction for distributed
systems!

14Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau (2018). Operating Systems: Three Easy Pieces. 1.00. Arpaci-Dusseau Books.

Jie Lu, Chen Liu, Lian Li, Xiaobing Feng Feng Tan, Jun Yang, Liang You | ICT 28 / 29

Thank you!
Any Questions?

	Appendix

