
GoBench: A Benchmark Suite

of Real-World Go Concurrency Bugs

Ting Yuan, Guangwei Li, Jie Lu, Chen Liu, Lian Li, and Jingling Xue

Institute of Computing Technology

of the Chinese Academy of Sciences
University of Chinese

Academy of Sciences
University of New South Wales

Go is popular

 Go is a language with the fastest-growing user base since
2011.

[1] Ranking Programming Languages by GitHub Users

[2] Developers say Google's Go is 'most sought after' programming language of 2020

https://www.benfrederickson.com/ranking-programming-languages-by-github-users/
https://www.zdnet.com/article/developers-say-googles-go-is-most-sought-after-programming-language-of-2020/#:~:text=Developer%20analyst%20RedMonk%20currently%20ranks,followed%20by%20Python%20and%20Java.

Concurrency in Go

 Message passing and shared memory are widely used in
real world Go applications.

Share

memory

send

recv

Goroutine 1 Goroutine 2
Goroutine 1 Goroutine 2

Concurrency in Go

 However, using the two mechanisms together may easily
lead to mistakes.

An example from Kubernetes

s.podLock.Lock()
s.podChan <- true
s.podLock.Unlock()

s.podLock.Lock()
s.podChan <- true
s.podLock.Unlock()

Goroutine 1 Goroutine 2

<- s.podChan

s.podLock.Lock()
s.podLock.Unlock()
<- s.podChan

s.podLock.Lock()
s.podLock.Unlock()

Concurrency in Go

An example from Kubernetes

s.podLock.Lock()
s.podChan <- true
s.podLock.Unlock()

s.podLock.Lock()
s.podChan <- true
s.podLock.Unlock()

Goroutine 1 Goroutine 2

<- s.podChan

s.podLock.Lock()
s.podLock.Unlock()
<- s.podChan

s.podLock.Lock()
s.podLock.Unlock()

 However, using the two mechanisms together may easily
lead to mistakes.

Concurrency in Go

 And there are also many Go specific non-blocking bugs

for _, c := range checks {
go func() {

CheckInTxn(&c.Name)
}

}

select {
case <- s.donec:

return
default:

}

close(s.donec)
s.donec = nil

Channel misuse in Istio Anonymous function misuse in CockroachDB

Goroutine 1 Goroutine 2

Motivation

 Researches on 𝐺𝑜 𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦 𝑏𝑢𝑔𝑠 gradually rise

 But so far there is no measure-
ment to evaluate concurrency
bug detectors on Go!

 Open source detectors:
- goleak
- go-deadlock
- dingo-hunter
… …

Overview of 𝑮𝒐𝑩𝒆𝒏𝒄𝒉

 A benchmark suite of real-world 𝐺𝑜 𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦 𝑏𝑢𝑔𝑠

 𝐺𝑜𝐵𝑒𝑛𝑐ℎ is composed of 𝐺𝑜𝑅𝑒𝑎𝑙 and 𝐺𝑜𝐾𝑒𝑟

 𝐺𝑜𝑅𝑒𝑎𝑙: 82 representative bugs found in 9 popular open
source applications

 𝐺𝑜𝐾𝑒𝑟: 103 bug kernels extracted from 𝐺𝑜𝑅𝑒𝑎𝑙 and a recent
study [1]

[1] Tu, Tengfei, et al. “Understanding real-world concurrency bugs in Go”. ASPLOS 2019.

𝑮𝒐𝑹𝒆𝒂𝒍: Real world bugs

 Collect concurrency bugs in pull requests

 It address a concurrency bug
 Reproduce steps are clear
 There is a test function as the entry point

𝑮𝒐𝑹𝒆𝒂𝒍: Real world bugs

 Package those bugs into Dockerfiles

𝑮𝒐𝑹𝒆𝒂𝒍: Real world bugs

 Bug classification

Bug Type (#Bugs)

Blocking Bugs (40)

Resource Deadlock (9)

Communication Deadlock (21)

Mixed Deadlock (10)

Non-blocking Bugs (42)
Traditional Bugs (24)

Go-specific Bugs (18)

𝑮𝒐𝑲𝒆𝒓: Kernels extracted from real world bugs

 36 bug kernels are reconstructed from a recent study.[1]

 67 bug kernels are extracted from 𝐺𝑜𝑅𝑒𝑎𝑙

[1] Tu, Tengfei, et al. “Understanding real-world concurrency bugs in Go”. ASPLOS 2019.

𝑮𝒐𝑲𝒆𝒓: Kernels extracted from real world bugs

 We manually extract the code snippets into a separate test
function.

𝑮𝒐𝑲𝒆𝒓: Kernels extracted from real world bugs

 Bug classification

Bug Type (#Bugs)

Blocking Bugs (68)

Resource Deadlock (23)

Communication Deadlock (29)

Mixed Deadlock (16)

Non-blocking Bugs (35)
Traditional Bugs (21)

Go-specific Bugs (14)

Evaluation

 Blocking bugs
Static tools: dingo-hunter
Dynamic tools: go-leak, go-deadlock

 Non-blocking bugs
Dynamic tools: built-in race detector (Go-rd)

Blocking bugs

Suite Bug Type
goleak go-deadlock dingo-hunter

TP/FN/FP # TP/FN/FP # TP/FN/FP

𝐺𝑜𝑅𝑒𝑎𝑙

Resource Deadlock 1/8/1 7/2/0 -/-/-

Communication
Deadlock

8/13/0 1/20/4 -/-/-

Mixed Deadlock 3/7/1 4/6/3 -/-/-

Total 12/28/2 12/28/7 -/-/-

𝐺𝑜𝐾𝑒𝑟

Resource Deadlock 14/9/0 23/0/0 0/23/0

Communication
Deadlock

20/9/0 0/29/0 1/28/0

Mixed Deadlock 9/7/0 6/10/0 0/16/0

Total 43/25/0 29/39/0 1/67/0

Non-blocking bugs

Suite Bug Type
Go-rd

#TP #FN #FP

𝐺𝑜𝑅𝑒𝑎𝑙

Traditional 23 1 0

Go-specific 13 5 0

Total 36 6 0

𝐺𝑜𝐾𝑒𝑟

Traditional 21 0 0

Go-specific 11 3 0

Total 32 3 0

Efficiency of dynamic tools

A case study (serving#2137)

https://github.com/knative/serving/pull/2137

 A mixed deadlock bug reported in Knative/serving

https://github.com/knative/serving/pull/2137

A case study (serving#2137)

 Goroutines in this case are spawn within a for loop. Multiple
buffered channels are involved in the mixed deadlock, and
their buffer sizes are different.

 Currently, there is no static tool that can detect it. Dynamic
tools require tens of thousands of times to trigger the bug.

 You can try its bug kernel:
https://github.com/timmyyuan/gobench/blob/master/gobench/g
oker/blocking/serving/2137/serving2137_test.go

https://github.com/timmyyuan/gobench/blob/master/gobench/goker/blocking/serving/2137/serving2137_test.go

Conclusion

 𝐺𝑜𝐵𝑒𝑛𝑐ℎ is the first benchmark suite of real-world
𝐺𝑜 𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦 𝑏𝑢𝑔𝑠.

 Static tools need to improve the effectiveness of finding
concurrency bugs in Go.

 Dynamic tools need to improve the efficiency of finding
concurrency bugs in Go.

Conclusion

 We publish 𝐺𝑜𝐵𝑒𝑛𝑐ℎ at https://github.com/timmyyuan/gobench

 We believe 𝐺𝑜𝐵𝑒𝑛𝑐ℎ will be instrumental in helping researchers
understand concurrency bugs in Go and develop effective tools
for their detection.

https://github.com/timmyyuan/gobench/blob/master/gobench/goker/blocking/serving/2137/serving2137_test.go

THANK YOU
Q&A

Contact

 Ting Yuan
- yuanting@ict.ac.cn

 This presentation and recording belong to the authors. No distribution is
allowed without the authors' permission.

mailto:yuanting@ict.ac.cn

