GoBench: A Benchmark Suite
of Real-World Go Concurrency Bugs

Ting Yuan, Guangwei Li, Jie Lu, Chen Liu, Lian Li, and Jingling Xue

SYDNEY

Institute of Computing Technology University of Chinese

| Q)
of the Chinese Academy of Sciences Academy of Sciences 2

University of New South[

Go is popular

o Go is a language with the fastest-growing user base since

2011.

4.0

Go
TypeScript

N N w w
o) o 3

Percentage of MAU
&

otlin

-
o

ust

0.5

0.0
B NN A LN C R 10\6 o

oo N

o \®

o 2

20

[1] Ranking Programming Languages by GitHub Users

[2] Developers say Google's Go is 'most sought after' programming language of 2020

Programming languages that working professionals would like to learn:

W Working professionals

https://www.benfrederickson.com/ranking-programming-languages-by-github-users/
https://www.zdnet.com/article/developers-say-googles-go-is-most-sought-after-programming-language-of-2020/#:~:text=Developer%20analyst%20RedMonk%20currently%20ranks,followed%20by%20Python%20and%20Java.

Concurrency in Go

0o Message passing and shared memory are widely used in
real world Go applications.

Goroutine 1 Goroutine 2
Goroutine 1 Goroutine 2

|_send

d

Concurrency in Go

o However, using the two mechanisms together may easily

lead to mistakes.
Goroutine 1

<- s.podChan

s.podLock.Lock()
s.podLock.Unlock()
<- s.podChan

s.podLock.Lock()
s.podLock.Unlock()

Goroutine 2

n

wn

.podLock.
.podChan
.podLock.

.podLock.
.podChan
.podLock

Lock ()
<- true
Unlock()

Lock ()
<- true

.Unlock()

0o
-

An example from Kubernetes

Concurrency in Go

o However, using the two mechanisms together may easily

lead to mistakes.
Goroutine 1

<- s.podChan

s.podLock.Lock()
s.podLock.Unlock()
<- s.podChan

s.podLock.Lock()
s.podLock.Unlock()

Goroutine 2

n

n

.podLock.
.podChan
.podLock.

.podLock.
.podChan
.podLock.

Lock ()
<- true
Unlock()

Lock ()
<- true
Unlock ()

‘-

An example from Kubernetes

Concurrency in Go

o And there are also many Go specific non-blocking bugs

Goroutine 1

Goroutine 2

dselect {___________l
case <- s.donec:
T T Yetarn T T
default:
}

Channel misuse in Istio

for _,FZE:= range checks {
go #Unc() [—— (
CheckInTxnk&c.Nameﬂ

[~ -

Y e
}

Anonymous function misuse in CockroachDB

=GO

Motivation

0 Researches on Go concurrency bugs gradually rise

o Open source detectors:
- goleak
- go-deadlock
- dingo-hunter

o But so far there is no measure-
ment to evaluate concurrency
bug detectors on Go!

Overview of GoBench

o A benchmark suite of real-world Go concurrency bugs
0 GoBench is composed of GoReal and GoKer

O GoReal: 82 representative bugs found in 9 popular open
source applications

O GoKer: 103 bug kernels extracted from GoReal and a recent
study !

[1] Tu, Tengfei, et al. “Understanding real-world concurrency bugs in Go”. ASPLOS 2019.

GoReal: Real world bugs

o Collect concurrency bugs in pull requests

Cockroach ps

o

9 oeted

iJ' GRPG: docker

A_L Istio

kul

@0@ @ Syncthiry

[']

O It address a concurrency bug
O Reproduce steps are clear
O There is a test function as the entry point

GoReal: Real world bugs

o Package those bugs into Dockerfiles

GoReal: Real world bugs

o Bug classification

Bug Type (#Bugs)

Resource Deadlock (9)
Blocking Bugs (40) Communication Deadlock (21)

Mixed Deadlock (10)

Traditional Bugs (24)

Non-blocking Bugs (42) -
Go-specific Bugs (18)

GoKer: Kernels extracted from real world bugs

O 36 bug kernels are reconstructed from a recent study.l"

O 67 bug kernels are extracted from GoReal

g) Gl semacqulre] :
There’s a deadlock in assignSimpleTokenToUser. The ca /:lul.h‘I:L'.‘WDO]l_L'![.L'!L‘. funcl(...)
function acquires lock as.simpleTokensMu and posts to .../auth. (+simpleTokenTTLKeeper) .run(...)
addSimpleTokenCh (suppose that the channel is full so created by .../etcd/auth.NewSimpleTokenTTLKeeper
it blocks). If the goroutine simpleTokenTTL-Keeper.run r .
cnan senda N

happens to hit <-tokenTicker.C, it will try to acquire
simpleTokensMu while calling delete-TokenFunc. Since
only the goroutine simpleToken-TTLKeeper.run can drain
addSimpleTokenCh, the lock is never released.

...Jauth. (+*simpleTokenTTLKeeper) .addSimpleToken(...)
../Jauth. (»tokenSimple) .assignSimpleTokenToUser(...)
.../auth. (+tokenSimple) .assign(...)
../auth. (vrauthStore) .Authenticate(...)
J created by .../eted/auth.TestHammerSimpleAuthenticate

W
L]

[1] Tu, Tengfei, et al. “Understanding real-world concurrency bugs in Go”. ASPLOS 2019.

=GO

GoKer: Kernels extracted from real world bugs

o We manually extract the code snippets into a separate test
function.

func TestEtcd7492(t *testing.T) {

func newDeleterFunc(t *tokenSimple) func(string) {
return func(tk string) {
t.simpleTokensMu. Lock()

as := setupAuthStora() // Fork G1
var wg sync.WaitGroup
wg.Add{len(users))

defer t.simpleTokensMu.Unlock() + wg.Add(3)
if username, ok := t.simpleTokens[tk]; ok { - for u := range users {
plog.Infof("deleting token s for user %s", tk, username) + for 1 :=8;i <351 = {]
deleta(t.simpleTokens, tk) - go func(user string) {
+ go func() { // Fork G2, G3, and G4
) defer wg.Dona()
ks - _, err := as.futhInfoFromCtx(ctx)
type simpleTokenTTLKeeper struct { - if err 1= nil {
tokens map[string]time.Time - t.Fatal{err)
addSimpleTokencCh chan string . .
. - - rlu}
addSimpleTokenCh chan struct{} . as.Authenticate()
resetSimpleTokenCh chan string + 10
deleteSimpleTokenCh chan string b
stanch chan chan struct{? - time.Sleep(time.Millisecond)
- © X = L wg . Wait()
deleteTokenFunc func{stringy .

GoKer: Kernels extracted from real world bugs

o Bug classification

Bug Type (#Bugs)

Resource Deadlock (23)
Blocking Bugs (68) Communication Deadlock (29)

Mixed Deadlock (16)

Traditional Bugs (21)

Non-blocking Bugs (35) -
Go-specific Bugs (14)

Evaluation

o Blocking bugs
Static tools: dingo-hunter
Dynamic tools: go-leak, go-deadlock

o Non-blocking bugs
Dynamic tools: built-in race detector (Go-rd)

Blocking bugs

go-deadlock

: : .-

TP/FN/FP # TP/FN/FP # TP/FN/FP
Resource Deadlock 1/8/1 7/2/0 -
S gggg@igcaﬂom 8/13/0 1/20/4 -/}
Mixed Deadlock 3/7/1 4/6/3 ===
Total 12/28/2 12/28/7 ===
Resource Deadlock 14/9/0 23/0/0 0/23/0
Coor gg;@gﬂicaﬁon 20/9/0 0/29/0 1/28/0
Mixed Deadlock 9/7/0 6/10/0 0/16/0
Total 43/25/0 29/39/0 1/67/0

Non-blocking bugs

» e
uicte u e
= W #TP #EN #FP

Traditional 23 1 0
GoReal Go-specific 13 5 0
Total 36 6 0
Traditional 21 0 0
GoKer Go-specific 11 3 0
Total 32 3 0

Efficiency of dynamic tools

{0, 1] = (1, 100] = (100, 1000] m (1000, +]
100%

75%
50%

25%

B B B

Qo\e{a\e‘ e"b&oc} 60"6
A

(a) GOREAL

(0,1] = (1, 100] m (100, 1000] m (1000, +]
100%
75%
50%
25% . .
0%
P GOl
9
(b) GOKER

Fig. 10. Percentage distribution for the (average) number of runs falling into
each of the four given intervals that is needed by a tool in finding a bug.

A case study (serving#2137)

o A mixed deadlock bug reported in Knative/serving

’ tanzeeb commented on 3 Oct 2018

Fix race condition in pkg/queue/breaker test.go which results in occasional
deadlocks and flakey tests. The order that requests were performed was not
deterministic, but the tests expect them to be ordered.

https://github.com/knative/serving/pull/2137

https://github.com/knative/serving/pull/2137

A case study (serving#2137)

o Goroutines in this case are spawn within a for loop. Multiple
buffered channels are involved in the mixed deadlock, and
their buffer sizes are different.

o Currently, there is no static tool that can detect it. Dynamic
tools require tens of thousands of times to trigger the bug.

O You can try its bug kernel:
https://github.com/timmyyuan/gobench/blob/master/gobench/g
oker/blocking/serving/2137/serving?2137 test.go

https://github.com/timmyyuan/gobench/blob/master/gobench/goker/blocking/serving/2137/serving2137_test.go

Conclusion

0 GoBench is the first benchmark suite of real-world
Go concurrency bugs.

o Static tools need to improve the effectiveness of finding
concurrency bugs in Go.

o Dynamic tools need to improve the efficiency of finding
concurrency bugs in Go.

Conclusion

o We publish GoBench at https://github.com/timmyyuan/gobench

o We believe GoBench will be instrumental in helping researchers
understand concurrency bugs in Go and develop effective tools
for their detection.

https://github.com/timmyyuan/gobench/blob/master/gobench/goker/blocking/serving/2137/serving2137_test.go

THANK YOU
Q&A

Contact

o Ting Yuan
- yvuanting@ict.ac.cn

0 This presentation and recording belong to the authors. No distribution is
allowed without the authots' permission.

mailto:yuanting@ict.ac.cn

